HATFIELD BOROUGH PLANNING COMMISSION

November 18, 2024

KENNETH V. FARRALL, CHAIR

LAWRENCE G. STEVENS, VICE CHAIR

LARRY BURNS, MEMBER

JOHN KROESSER, MEMBER

MICHELLE KROESSER, MEMBER

JAIME E. SNYDER, BOROUGH MANAGER

Borough of Hatfield

Montgomery County, Pennsylvania

PLANNING COMMISSION November 18, 2024 6:00PM AGENDA

Call to Order / Roll Call

Kenneth Farrall

Lawrence Stevens

Larry Burns

John Kroesser

Michelle Kroesser

- 1. Motion to Approve the November 18, 2024 Agenda
- 2. Motion to Approve the September 23, 2024 Meeting Minutes
- 3. Hatfield Walk, 23 N. Main Street, Land Development Presentation
- 4. Old Business:
 - A. Bennetts Court Update
 - B. Didden Greenhouses Update
 - C. 43 Roosevelt Avenue Update
- 5. New Business:
- 6. Action Items:
 - A. Motion to Consider Granting Preliminary / Final Approval for Hatfield Walk, 23 N. Main Street, Development.
- 7. The Next Planning Commission Meeting is Scheduled for Monday, December 16, 2024 at 6:00PM in Council Chambers
- 8. Motion to Adjourn

401 S. Main Street P.O. Box 190 Hatfield, PA 19440

Phone:

215-855-0781

Fax:

215-855-2075

Email:

admin@ hatfieldborough.com

Website:

www.hatfieldborough.com

2. Motion to Approve the September 23, 2024 Meeting Minutes

PLANNING COMMISSION

September 23, 2024 6:00PM Meeting Minutes This Meeting was Recorded

ROLL CALL

- (X) Kenneth V. Farrall, Chair
- (X) Lawrence G. Stevens, Vice Chair
- (X) Larry Burns
- (X) John Kroesser -left at 6:40PM
- (X) Michelle Kroesser -left at 6:50PM

The record shows that five members of the Planning Commission were present along with Borough Manager Jaime E. Snyder, Chad Camburn; Borough Engineer and Public Information Coordinator; Lindsay Hellmann.

1. APPROVAL OF THE AGENDA:

Motion to Approve the September 23, 2024 Planning Commission Meeting Agenda

Motion: A motion was made by Larry Burns to Approve the the

September 23, 2024 Planning Commission Meeting Agenda. The motion was seconded by Michelle Kroesser

and unanimously approved with a vote of 5-0.

2. APPROVAL OF THE MINUTES:

Motion to Approve the Minutes of the March 25, 2024 Planning Commission Meeting with the corrections noted by Larry Burns.

Motion: A motion was made by Larry Burns to Approve the

March 25, 2024 Meeting Minutes. The motion was seconded by Michelle Kroesser and unanimously

approved with a vote of 5-0.

3. Hatfield Walk, 23 N. Main Street, Land Development Presentation

Ben Goldthorp from Pennington Property Group introduced himself to the Planning Commission and stated that he was present tonight to discuss the plan for Hatfield Walk at the location of 23 North Main Street. This plan did receive relief from the Zoning Hearing Board and part of the requirements was for this project to conform to the R-4 Zoning standards which is shown today with 8 townhomes. This project is about an acre of disturbance, the access is along North Main Street. There will be a Homeowners Association that will maintain the property. Mr. Goldthorp stated that they did receive the review letters from the Borough Engineer and Borough Traffic Consultant, most comments from the professional consultant reviews they will comply with. Ken Farrall asked about the open space that was discussed during the Zoning Hearing and if that was

still part of the plan for Hatfield Walk. Mr. Goldthorp replied that this is something that he is willing to discuss the details of the open space with Council.

Douglass Renner from 25 North Main wanted to express his concerns about the traffic due to this development.

After some discussion about the proposed plan for Hatfield Walk at 23 North Main, the Planning Commission stated that they will table this plan until they present new plans and ideas for the open space and are looking to be on the agenda for the October Planning Commission Meeting and the November Borough Council Meeting.

Motion:

A motion was made by Larry Burns to table Hatfield Walk until the October 28, 2024 Planning Commission Meeting. The motion was seconded by Larry Stevens and unanimously approved with a vote of 3-0.

4. Old Business:

A. Bennetts Court Update

Manager Snyder reported that the construction is coming to completion and the contractor is working on punch list items. They should be submitting some escrow releases to Borough Council soon.

B. Diddens Greenhouses Update

Manager Snyder stated that there is no update since the last Planning Commission Meeting update.

C. 43 Roosevelt Avenue Update

Manager Snyder reported that they are currently working on the developer's agreement and posting financial security.

5. New Business:

A. ZHB Meeting for 350 W. Broad Street, Schiano Properties LLC, is scheduled for Thursday, September 26, 2024 at 7:00PM in Council Chambers

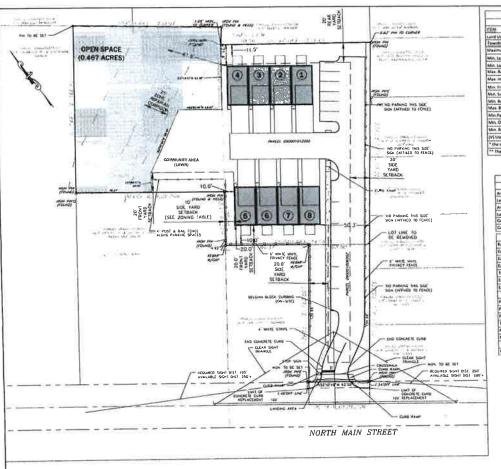
Ken Farrall explained that Vinny's is putting in a storage area and they have to go for zoning relief since the square footage of the area is over 5% of the total building. The addition is for 536 square foot storage area. Borough Council has authorized Manager Snyder to write a letter addressing the crosswalk issue. The Zoning Hearing Board reached out to Vinny's asking why they never completed the crosswalk which was part of their original Zoning Hearing Board order and the reason that they didn't complete it is because it is a Hatfield Borough project which grant funds were received for it.

Motion:

A motion was made by Ken Farrall to make a recommendation to approve the Zoning Hering Board

Planning Commission Meeting Minutes

September 23, 2024 application for Vinnys Pizza at 350 W Broad Street. The motion was seconded by Larry Stevens and unanimously approved with a vote of 3-0.


- 6. Action Items:
- 7. Next Meeting Monday, October 28, 2024, 6:00PM
- 8. Motion to Adjourn

Motion: A motion was made by Larry Stevens to adjourn the September 23, 2024 Planning Commission Meeting. The Motion was seconded by Larry Burns and unanimously approved with a vote of 3-0.

Respectfully Submitted, Kathryn Vlahos Assistant Manager

3. Hatfield Walk, 23 N. Main Street, Land Development Presentation

23 North Main Hatfield Walk Land Development Plans and Turning Template

	ZONING DATA TA	BLE	
	Zaning District - CC: Care Comm	naticial District	
ITEM	REQUESTO/FERMITTED FRCHOLED		MCTION
Lamif Use	Tevente	wie (N)	27.2100
Tawnbouse Regultements:	411		
Maximum Denaity	6 Dul/ April	5.35 DUFACES	Table 27 15-3
Min. Let Arcs	2,500 SF / Unit	#,1335// Unit	Table 27-15-3
Min. Lot Wellin	20 FU 25FF (God Limite)	2247 / 2241 [End Links]	Zanny Deckon
Man Building Coverage	ADN	12.0%	Table 27 (\$5-3
Man Imperious Surface.	75%	42.5%	Table 27-15-5
Mrs. From Yard Saspack	79 17	21.4 h	Zoning Decision
Mon. Side Yand Settrack	20111	30.11-	Zoning Decukar
Min Bast Yard Serback	2017	20.61	Zoning Occusion
Mae. Building Hoight	4041/431	124 /11011	27-2108 1 F
Min.Pains/ Orch Settack	1017	10/1	27411.14
NWs. Off-Street Parking	I Garage Spaces and I Greeney Sp.	size per Grit and 12 Overflow Springs	Zaming Decision
Ntm. Ripartan Corridor Wedth	2511**	25.11	27-2302 S.A.

* the minimum side and shall be 20 feet except adjatent to partel 59 00-01015-00-2 the settless shall be 10 feet minimum. ** The county's coorder is required to be 25 feet as the stream is an intermittent stream with a drainage area less than 75 access

		K.F.	ALIES
Area on Percei No. 29-00-01905-0	10-3	10,185	0.134
and Wedon R.O.W.		1,430	0.211
Arge in Parsel Inc. 03:00 01013 0	01	54,321	1 293
Land within R.D.W		8	13 0000
Continued Lot Area (Gross)		66,458	6.322
Cuntived List Area (Hel).		55,068	1.494
INFERVIOUS COVERAC	CHLCULATI	IONS	
Existing Improvious Area	8.5.	Atres	
Existing Owelling & Garage	1,247	0.029	
Extrag Palus & Walkman	675	0.015	
Existing Driveney	1,169	0.022	1
fulat Existing Emperiodes	1,031	11.071	l .
Existing Building Coverage	3	0%	1
Existing Improvious Coverage	4	.8%	1
Frapased Impe	relieus Area		1
Proposed Building & Occa	7,840	0.180	1
Proposed Droomay & Parking	17,583	0.404	1
Proposed Schools	2,491	\$85	1
Total Proposed Impervious	77,307	860	1
Proposts Building Coverage	1	2.0%	1
Proposed Imperious Coverage		2,5%	1
Change in Impervious Area	1 2	411.	1

Lat Arna Celas-

090001006002

æ

PLAN

RECORD

WALK

HATFIELD TMP # 090001012005

CORPORATE ACKNOWLEDGMENT

COUNTY OF THE COMMON AND THE COMMON

WITHERS MY HAND AND NOTARIAL SCAL THIS ______ DAY OF

NOTARY PURIS

APPROVAL OF EDROUGH

MANUAL BY MANUAL REPORT FROME

successive or sures

SURVEYOR'S CORLINGATION

THE IS TO CERTY THAT THE PLAN REPRESENTS A FILLD SURVEY HADE BY HE OF UNDER US SPECIATIONS IN THAT ALL PROMETS IS CORNERS AND CET AS SOMEN MERGEN, THAT ALL COMETING DETAILS AS SHAPM AND COMMETCH, AND THAT ALL LOTS ON TRACE'S MAKE A BOUNDARY CEDISMIC EXPORT OF I 10,000 OF BITTER.

PATRICK CAVANAUGH, PA PES

HOPE NO.

THYER NO --

PROPERTY STREET, STREE

REVENUE TO THE APPROVED SAN SEE THAT A SENSE FARSE AND THE APPROVED SAN SEE THAT A SENSE FARSE AND THE APPROVED THAT A SENSE FARSE AND MUST BE SOMETHING TO THE CONCENTRAL

NILL STATES T CONNENGRAM, P.C.

FOR THE GALCETOR

DANER/ APPLICANT PENNINGTON PROPERTY CROUP LLC PLO BOX CHALFORT, PA 18914 (267) 767-0876

OFSIGN ENGINEER CERTIFICATION

N ROSERT CUMPRICAMAL ON 1445 DATE
STORMWATER MANAGEMENT 1-AAM MEETS ALL
CESCON STANDARDS AND CRITICAL OF THE
HATFELD ROOMOUST

PA LICENSE # PEDJ6424

1727_C1_0_Record.dwg 1727 17034 17-30 ALE Job Sone Designed Drawing No. C1.0

MIE PLAN HOLLS
1 HOUNDARY AND INPOGRAPHIC INFORMATION TAKEN FROM A PLAN TITLED "CHISTURG FEATURES" SURLY PREPARED BY CAVARAUGH'S SURVEYING SERMEL
DATED 08-10-7023.

LEGEND

0 ō

BULBAC MINAN

******* *** ***

PERF. TRATEG SER

PROP. PERCE

ELIVATIONS ON THE PLANS ARE BASED ON PA STATE PLANE COORDINATE STREET (SOUTH BONE) HORIZONFAL DATUM HAD-B) (1992 ADJUSTMENT)
AND VERTICAL DATUM HAVD-BA, BASED ON A FIELD SURVEY SERVICES ON JULY 22, 2022 AND NOTICE UNION WAVENING PERSO ON A FEED DAY TEACHER OF MAY 12, 2021

MINER PROPERTY OF THE ACCESSION OF THE PROPERTY OF THE

WILL SEND SHALL MICEAL MICHAEL STREET BY THE PROMETS OF THE PA COOL CHAPTER 201 TRAFTIC AND EMPERATIONS AND THE PROMETS OF THE PUBLIC STREET SHOULD BY THE PROMETS OF THE P

NARELU GROUCH MUNCHA NUMERA NUMERA (NEMERA) DE COMPANIO DE ACCUSANCE MIN MATELO ENDUAC CONSTRUCTION ALLERO DEVICANO. AND DIRECT PROGRESS (TANASCE OF MONOSCO) DES BALDRES (DEVICANO) AND DIRECT PROGRESS (TANASCE OF MONOSCO) DES BALDRES (DEVICANO) AND DIRECT PROGRESS (TANASCE OF MONOSCO) DES BALDRES (DEVICANO) AND DIRECT PROGRESS (DEVICANO) AN

APPLICATION THAT THE CLUSTER TO CHARLE DEST LAND TE, ARCHITECTURA PLACE, AND GENOME.

MANUS COLLICIONE HAN COCCUE NO CONSISTE CONCENTRATION AND CONCENTRATION OF CONTROL OF THE CONTROL OF

NO REPORT SHALL URDAY, RELIGION FALL LANGECHET, OR ALICE ANY STONMENTER MARKEUTHI (SAM) BEST MANAGEMENT PRACTICES (BMPS), FACILIES, AREAS, OR STRUCTURES UNITES IT IS PART OF AN APPROVED MANITEMANCE PROGRAM AND WRITTEN APPROVAL OF THE BORGODY HAS BERT ORTHAND.

NO PERSON SHALL PLACE ANY STRUCTURE, FEL, LANGSCHANG OR VECETARDY WID A STORMARTER FACULTEOR BUP OR WINN A DRAINACE EASTERN WHICH WOULD LAST OR ALTER INC TUNCTIONING OF THE STORMARTER FACULTEOR BUP WINDUT INC WRITELY APPROVAL OF THE

IN ALL DISTURBED TOPSOL ON SITE IS TO BE REDISTRIBUTED ON SITE IN ANCAS HOT COVERED BY EMPERIOUS SUBFACES HO MEMOVAL OF TOPSO
A SITE IS ALLDRED UNILESS APPROVED BY HATFILLD BENDUCH

A SIE IS ALLINED UNICES APPROVED BY MAILLE DISCOURTED WAS MAINTENANCE OF THE STORMWATER FACULTIES REFER TO THE POST CONSERUCTION MAINTENANCE PROCEDURES.

CONSERUCTION MAINTENED FOR NO DETAILS, AS WELL AS, THE APPROVED DISCOURT OF MAINTENANCE PROCEDURES.

IN TOWARD STATE AND CHARGE PARTY WILL BE A PRIVATE STITLE OWNER AND HANDARDS BY THE COMMUNICATION OF MAINING BY THE COMMUNICATION OF THE COMMUNICATION OF

20 WHET I 3 44 7 OF 14 AND THE DIET PLANS WITHOUT TO BE RECORDED

0AIE 10/11/2024 DHAWNS THE NUMBLE RECORD PLAN C1 0 10/11/2024 EXISTING FEATURES PLAN CII 10/11/2024 AERIAL PHOTO PLAN Ç1.2 - 3 10/11/2024 SITE IMPROVEMENT PLAN . CZ O 10/11/2024 C2 1 CONSTRUCTION DETAILS 10/11/2024 C3 0 CHACING AND DRAINAGE PLAN 10/11/2024 POSM DETAILS C11 10/11/2024 UTILITY PLAN C4 0 10/11/2024 WATER DETAILS C4.1 SANITARY SEWEN DETAILS 10/11/2024 10 C4 2 EROSION AND SEDIMENT CONTROL PLAN 10/11/2024 C5 0 10/11/2074 EROSION AND SCOMENT CONTROL DETAILS 12 C5.1 LANDSCAPE PLAN 10/11/2024 C6 0 13

CANDSCAPE DETAILS

PROFILES

DRAWING LIST

Tour State of Tour

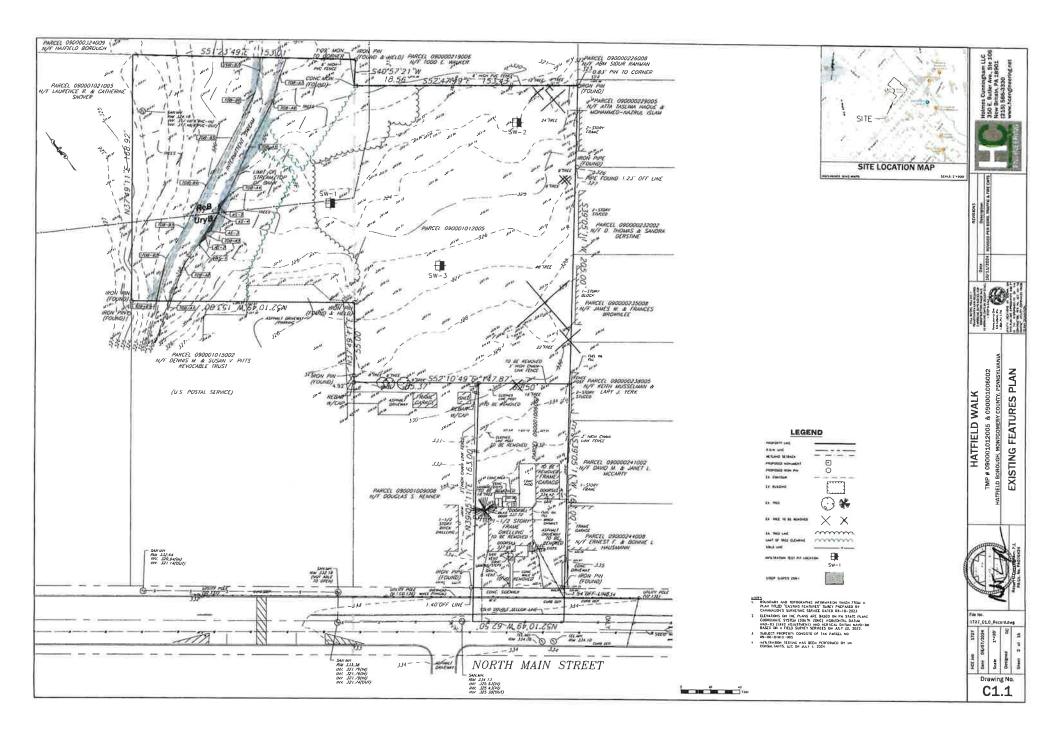
14

15

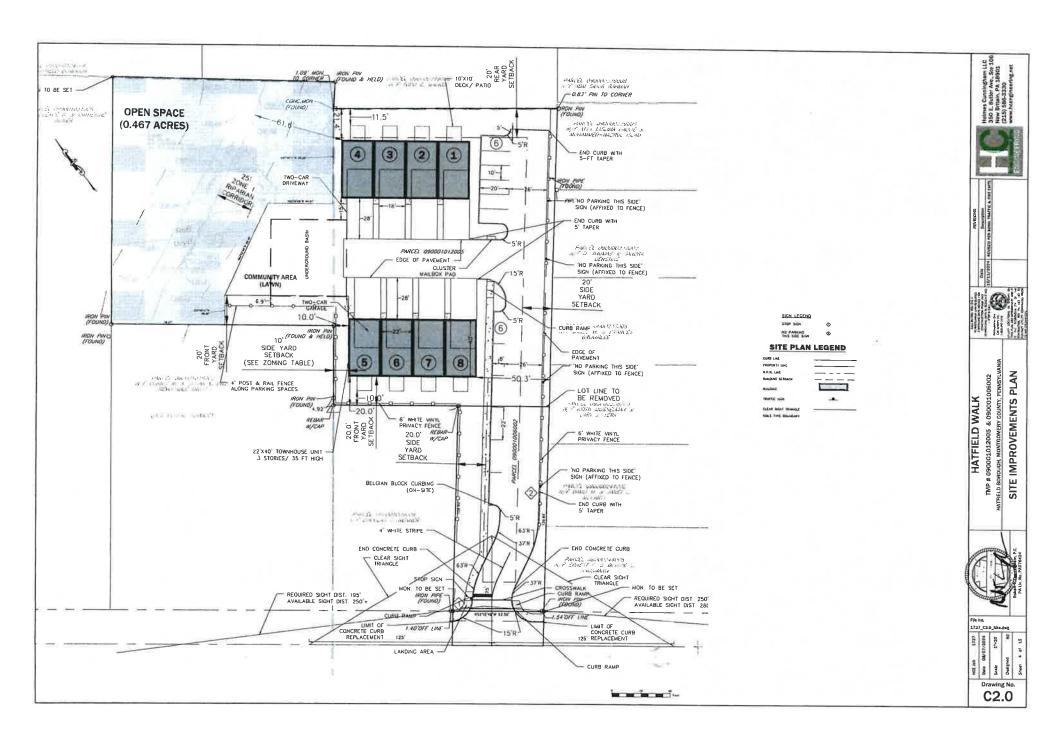
C6 1

C70

ZOWING HEARRIG DECINION.


10/11/2024

10/11/2024


ON APRI 24, 2024, ABIDO CROYL DEVILOPMENT COUPANT, LIC WAS GRANTED THE FOLLOWING VARIANCES FROM THE HATFELD BONDUCH ZORNING DRIVANCE (THE "ZORNO GROWANCE") FROM SECTIONS 27-100, 17-104, 37-2101, 17-2408 LG, and 27-2108 IN OF THE ZORNING TO RECORD THE CONTROL OF THE CONTROL OF

ON JULY 25, 2021, ASSIGN CORPT SYSTEMACY | TOWN SCIENTISTS IN THE COLLEGE CONTINUES TO STATE AND THE THREE DISTORUCE |

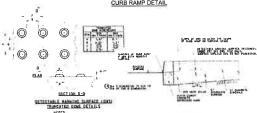
FORMULE DISTORUCE (THE TIPENE OF STATE OF STATE AND THE STATE OF STATE O

- ALL POSTS SHALL BE OF ADEQUATE LENGTH TO MEET THE REQUIREMENTS FOR ERECTION AS STATED BY THE CURRENT "MANUAL ON METGRAN TRAFFIC CONTROL OFFICES FOR STREETS AND INGHINATS"
- 2 ALL POSTS SHALL BE EMBEDDED 4'-2" MINIMUM BELOW GRAD!
- ALL SIEEL POSIS AND BRACKLIS SHALL BE CUI.
 BENT, AND HOCES PUNOVED AND ORLICO BLOCKE
 GALVANIZHO: GHALL BE IN
 CONFORMANCE WITH CURRENT A 5 I'M
 SPECERICATION ALS3-78 (OR LATEST REVISED)
- POSTS MAT BE STEEL ALUMINUM OR TWO-PIECE U-POST

STOP SIGN

- SIGNS DETAIL

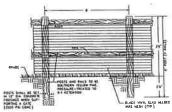
THE POST OF THE PARTY OF To sell 12, mar 10 MI SPI-TT BUILD-STREET Marie Control Control


OLUMPIA KAN'T BURETTE BE CAN INC. . Original water than the season to . (In the same place, at one out to

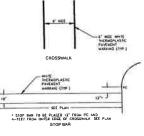
NOIES

I DITECTABLE WARNING SURFACES SHALL BE INSTALLED AT ALL CURB RAMPS
AND CROSSINGS

C CUBB RAMPS SHALL BE INSTALLED AT ACCORDANCE WITH PEARIDGE
PUBLICATION 72M, MOST RECENT LOTTON

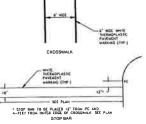

CURB RAMP DETAIL

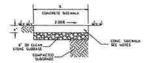
TES.


OCTECTABLE WARNING SURFACES SMALL BE INSTALLED AT ALL CURB RAMPS AND CROSSINGS

DETECTABLE WARNING SURFACE DETAIL

HEGHT	100	HEART OF PEST OUT OF GROUND
SLP14	36	SOTIL SET WIS SERVICE
LENCTO	•	PULL SPORME COOKS TO CENTER
****	3-46 14 - 18	2 EACH, GIT WAS BUCKESS
SPACE	1-11/16"	SEPPLES FALT
STEEL REINFONCEMENT	NS	
ACRE 2-11	1" EN-18E	gratiems teconolis

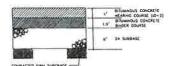

POST AND RAIL FENCE


NOTES

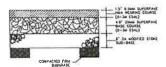
1 ALL FENCE POSTS ARE TO BE SET IN CONCRETE FOOTINGS
1 FOR ADDITIONAL INFORMATION REFER TO MANUFACTURERS SPECIFICATIONS

SOLID VINYL PRIVACY FENCE

PAVEMENT MARKINGS



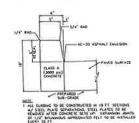
SIDEWALK_SECTION


- S SOEMALK IS TO BE PROVIDED, PLACED, CURED AND FINISHED TO PENNIODT SPECIFICATIONS PUB. 408(CURRENT EDITION), SCENONS TOK AND TOOL TIPE A CONCRETE (3.300 PS, THENTY-DIGHT-DAY STRENGTH) SHALL BE USED.
- 2 CONTRACTION JOINTS SPACED AT COURL INTERVALS BETWEEN EXPANSION JOINTS, NOT TO EXCEED 5 FEET FOR SIDEWARKS TO BE FORMED BY DIVISION PLATES OR CUITING GROOVE WITO CONCRETE SUBFACE NOT LESS THAN 1/3 ENTIRE DEPTH OF SLAB.

- MINIMUM NO IL SIX BY SIK MESH TO BE USED IN CONCRETE DRIVEWAY CONSTRUCTION
- CONTRACTION JOINTS ARE TO BE PLACED EVERY S' AND EXPANSION JOINTS TO ARE TO BE PLACED EVERY 20
- SIDE WALK BEDDING SHALL BE 4" OF 2B CLEAN STONE
- SECURAL IN BOROUGH RIGHT-OF-WAY SHALL BE CURED WITH HOLHOW 2000 OR APPROVED COL

SIDEWALK DETAIL

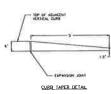
INDIVIDUAL UNIT DRIVEWAY PAVEMENT SECTION



NOTES.

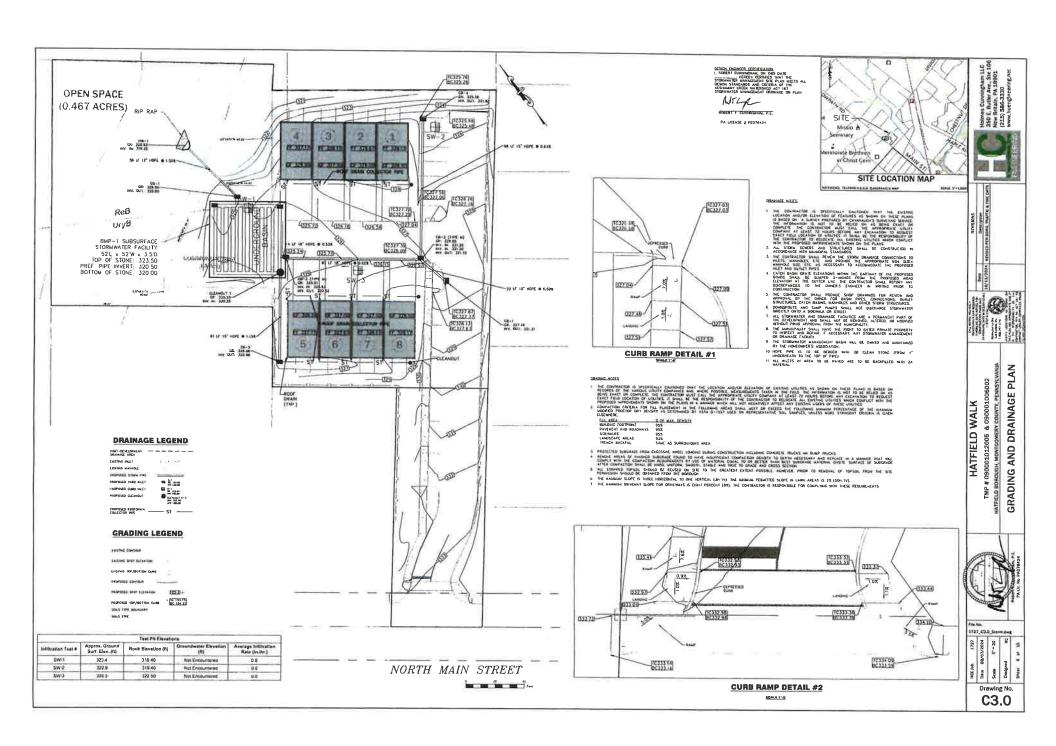
1) ALL COURSES SHALL CONFORM TO PADOT 4GB REDUREMENTS.
2) PAMMEMENT SECTION TO BE USED FOR ALL ADADS.

3) PAWNG MATERIAL SHALL BE 0.0 TO D.3 mESAL DESIGN.


SHARED DRIVEWAY PAVEMENT SECTION

CONCRETE CURB

BELGIAN BLOCK CURB


Drawing No.

1727 CX 0 Site dwg 1727 2024 N.T.S R.C.

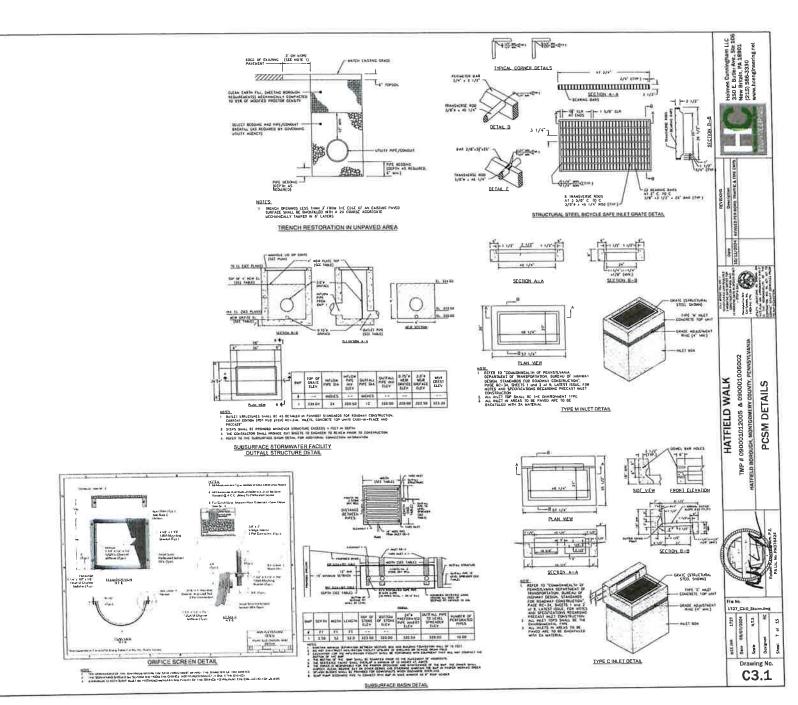
TMP # 090001012005 & 090001005002 LLD BORGUGH, MONTGOMERY COUNTY, PENNSYLY CONSTRUCTION DETAILS

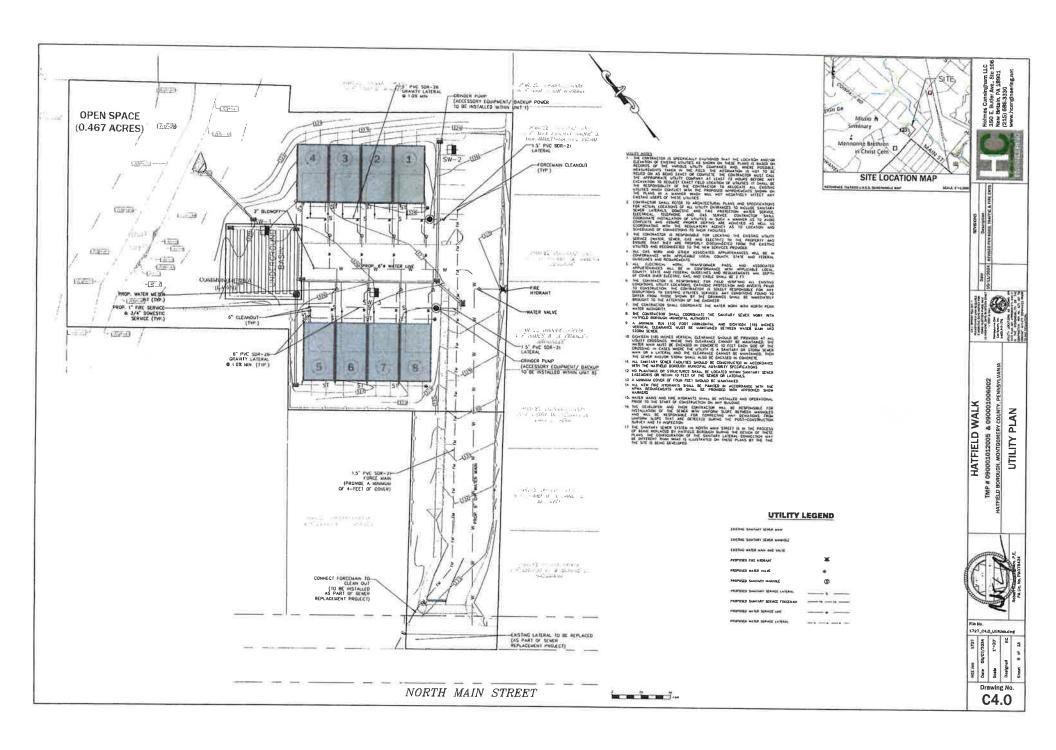
HATFIELD WALK

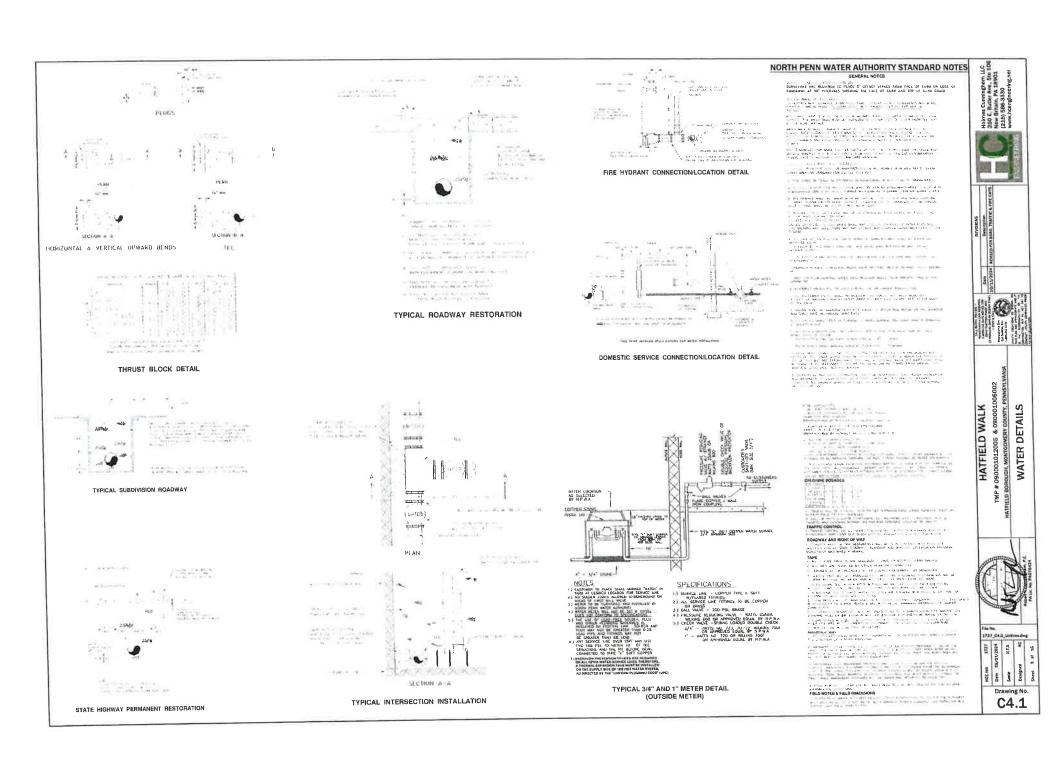
Starel Stare

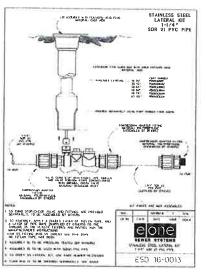
CONCRETE ENCASEMENT DETAIL

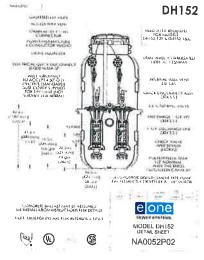
CHARLESON MINERAL FIRE PERSONS

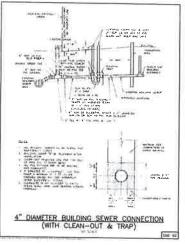

- EXCHANGE COMMENT SHOULD BE TAKED CONTROL THE CHAPT OF SHE TAKENSON OF SUBMENTAL THE MATTER AND THE STREET OF THE A Binned OF THE CITY HE CANNOT THE SOURCE STREET OF THE OWNER STREET OF THE COMMENT OF THE STREET OF THE STREET OF THE STREET STREET OF THE STREET OF THE STREET OF THE STREET OF STREET STREET OF THE STREET OF THE STREET OF THE STREET WHITE STREET OF THE STREET OF THE
- PACE PORT UNIT OF CLAMP STORE PRODUCED AND STORE STORE PACKAGINED OF PRODUCED PRODUC

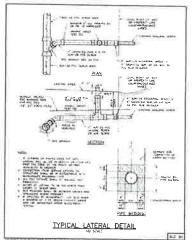

BMP MAINTENANCE PLAN NOTE: AN ANNIAN REPORT SHALL BE PREPARED AND RETAINED BY THE RESPONSIBLE PARTY STATING THE FOLLOWING MAINTENANCE WAS BEEN PERFORMED.

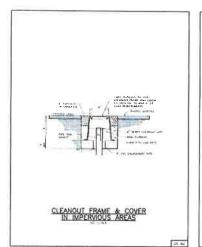

THE GIMMER IS RESPONSIBLE FOR MAINTCHANCE OF THE STORWHATER CONNETANCE STSTEM SUBSURFACE INTERATION AREA, MATER QUALITY WISERTS, AND ALL OTHER PROPOSED BURS

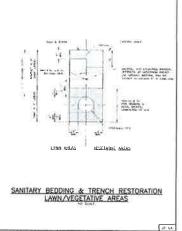

- MENTILE DEVICTIONS INVESTIGATE ALL THE PROPERTY OF THE STRUCKING OF THE PROPERTY OF THE STRUCKING OF THE PROPERTY OF THE PROPE

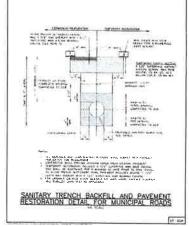

- COMMON TO MANAGEMENT AND AT LEAST FORM THESE A TEAM, AS WELL AS AFFIRE SECTION OF THE SECTION OF
- SUMMET FINANCISMON AND PROPERTY COMMENTS AND AND THE MANAGEMENT OF THE STATE OF THE

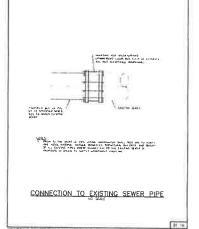




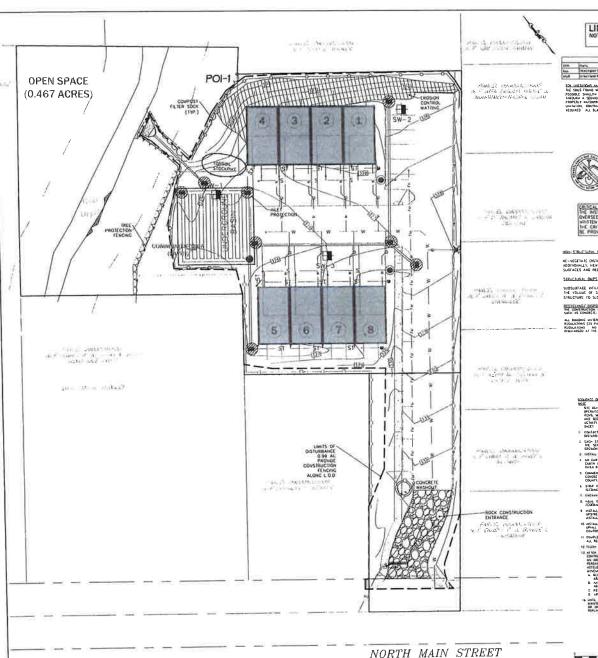








ORNOER PUMP DETAILS


200 AMALIA AMALIA SALAMAN AMALIA SAL

HATFIELD WALK
TIMP # 090003.012.005 & 090001.005002
HATFIELD BORGUCH, MONTGOMENY COUNTY, POWSON WANA
SANITARY SEWER DETAILS

File MA.
1727_CAO_Utilibres.dwg
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.51
40.5

C4.2

LIMIT OF DISTURBANCE = 0.99 ACRES NOTE TO CONTRACTOR: NPDES PERMIT WILL BE REQUIRED

IF ACTUAL DISTURBANCE EXCEEDS 10 ACRES

	SOLE TIPES							
(m)	200	PROFITE.	Septimis before the	Graph in Wiser Tools	1152			
tat.	receivant to reen. In the land		Ni st	I to The	ĮĮ.			
10.0	In her hate the binglast markets, these bits where.		98	14.36	1c			

THE INSTITUTE OF THE PROPERTY OF THE PROPERTY

ACT 187 AS AMENDED URLITY LOCK TOWN AND SHOWN ON THAN THAN ANY APPROXIMATE AND IT IS NOT ADMINISTRATION FOR AN ACT HEF TO CONTACT THAN THE ANY ACT HEF TO CONTACT TOWN AND THAN THE ANY ACT HEF TOWN AND THAN THE ANY ACT TOWN AND THE ANY ACT TOWN ANY ACT TO THE ACT TOWN ANY ACT TO THE A

THE REPORT OF THE SECRET OF THE PROPERTY OF THE PROPERTY OF THE SECRET O

HE-VEGETATE DISTURBED AREAS. ALL DISTURBED AREAS THE BE PERMANENTES SEEDED OR LANDSCAPED ADDITIONALLY, NEW TREES WILL BE PLANTED THROUGH FOR SHE TO REDUCE THE THERMAL IMPACTS OF IMPERMOUS SURFACES AND REDUCE ROMPER VOLUME THROUGH THAT SHE TO REDUCE THOSE FOR VOLUME THROUGH THAT SHE TO REDUCE THOSE FOR THE PROPERTY OF THE THROUGH THAT SHE THE PROPERTY OF THE THROUGH THE THROUGH THROUGH THE PROPERTY OF THE THROUGH THE THROUGH THROUGH THE PROPERTY OF THE THROUGH THROUGH THE THROUGH THROUGH THE THROUGH THROUGH THROUGH THE THROUGH THROUG

SUBSUMFACE WILLEARDY BED. BLE SUBSUMFACE WFILERATION BED IS DESCRIBED TO REDUCE SOIN THE RATE AND BE VALUE OF STORMARIER GESCHARCE FROM THE SITE THE BUP WAL UPFILERATE RUNGEF AND USE AN DUILLE STRUCTURE TO SOLVET JULIERE EMONGER.

TOTAL OF THE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY AND EXCESS BALDING MAILBOAN AND EXCES

- SCHILLS HAIFIELD BOKOLIGH AND BORDLOT ENGLISH AT LEAST UNBEL (3) WORKING DATA PRICE TO STE DISTURBANCE THE BORDLOS SHALL BE NOTIFIED I DATS OF ADVANCE OF THE PRE-CONSTRUCTION MEETING.
- EACH STACK OF THE SEQUENCE OF CONSTRUCTION MUST BE COUNTETED TO BE BARRON OF THE REF STACK OF THE SEQUENCE OF CONSTRUCTION WISH BE COUNTED BY A SUBSEQUENT OF THE SECOND CONSTRUCTION WISH OF CONSTRUCTION OF THE CONSTRUCTION WISH OF A SUBSEQUENT THREE CASES OF CONTROL MEASURES OF THE CONSTRUCTION OF MAKE AS ALL ROSSON CONTROL MEASURES WANTED THREE CONTROL THREE CONTROL MEASURES WANTED THREE CONTROL THREE CONTROL MEASURES WANTED THREE CONTROL THREE CONTROL THREE CONTROL MEASURES WANTED THREE CONTROL THREE CONTRO
- NO CARTA DISTARBANCE ERALL CREMENCE UND. HALFELD ROBOUGH WISPELIS INE EAS CONTROLS AND AUTHORISES CARTA DISTARBANCE ACTIVITIES TO BEOM. THE EAS CONTROLS SHOUL HOT BE REPORTE UNTO AUTHORISEANCH IS SHOULD BY THE ROBOUGH.
- CONSIDERED DEMORITION OF CHILDING PERIODICATES TO HE REMOVED BEHOVE LAISING ADPART AND COMMUNIC SHAPE AND CONTROL SHAPE OF CO
- SIRP HOPSON AND SHOCKPLE WHERE SHOWN ON PLAN ALL SHRIPPED HOPSON SHORMES SHARL HAVE HE SLIDING MISTALLED ROUGH CHADE SHE PARENCY/DEVENAY AREAS, AND BUILDING PADS
- R HALL ELESS FEE OF SHE OF MICESSALTS IN ACCORDANCE WITH ALL APPLICABLE LOCAL COUNTY STATE AND FOORMAL REGULATIONS.

- AT MINISTER WIT WITE THE BEARING PART OF ACCUMULATION DATE.
- I Figure As a WEIGHT Stems demand, PAST or COOLANTS SALE SECURITY AS A CHARGES MINISTER, OF FIG. 1 and Fig. 1

- ACCEST

 A CONSTRUCTION OF THE TAX NO SENDED OF THE AMOUNT OF THE TAX DEPOSITS OF THE TAX THE T

GWNER/ APPLICANT PENNINGTON PROPERTY GROUP ILC

PO BOX CHALFONT PA 18914 (267) 767-0876 SESC LEGEND --- - UNIT OF DISTURBANCE LOT LINE COMPOST FILTER SOCK REPORTE ROCK CONSTRUCTION ENTRANCE Bats 11/2024 SOIL TYPE BOUNDARY SOIL TYPE

FILTER BAC INLET PROTECTION PROPOSEO CONTOUR EROSION CONTROL NATTING THEE PROTECTION FENCING PROPOSED TREEDING ERSTING: TREELINE

(82509 / Mineral Davids, Free Mandate willis

STOCKPALE MUST NOT LECTED AS FEET; STOCKPALE SLOPES MUST HOT EXCELS TO 10

INC DECRATOR/MESPONSIBLE PERSON (O/RP) ON SIT SHALL ASSURE THAT INC APPROVED ERRORS AND SEDUCIT CONTROL PLAN IS PROPURLY AND CONFLICTLY SPECIALISTIC

ALL PUMPING OF SIDMENT-LACEN MAILS SHALL BE THROUGH A SCHUTCH CONTROL SHP SUCH AS A PUMPIC MAILS FATER SEC DECRACING OWN MOSSINGED MELES

A COPY OF THE APPROVED EROMON AND SEGMENT CONTROL PLAN MUST BE AVAILABLE ON THE PROJECT SITE AT ALL THES INDICATE AND MEDICAL TO BUYS MUST BE CONSTRUCTED STABILITIES AND FUNCTIONAL BUYONE STEE OSTUNDANCE BECASS WITHIN THE TRAUTARY AREAS OF THOSE SAME.

AN AREA STALL BE CONSCIENCE TO HANG ACHIEVED PINAL STABULATION STATES IT INSERT A ROBBING BOOK TO SEPECIALLY MECKANIC OF ORDER PERMANENT ROB-MCCHARGE CONFR WITH A COURT IN ACTION TO ROSE ACCURANCE DIMENSION AND SUBMINIST

UPON INC INSTALLATION OF TEMPORARY SECURDAL BASIN MISCR(S), A QUALIFIED MIC REPRESENTATIVE SMALL CONDUCT AN INMEDIATE MISTRETION OF THE INSERTS) INCREUPON INC BOMOLOGY SMALL BE NOTIFIED IN MISTRATION INC. BOMOLOGY SMALL BE NOTIFIED IN MISTRATION INC. BASING THAT INC. BASING ISSUED (MISTRATION).

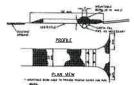
SECURITY RELIGIOUS FROM DIMPS SHALL BE DISPOSED OF DHI-DIT IN LANGELAPED AREAS ON BREE OF STEEP SLOPES, MELANDES SECURITY SECURIT

AND STANDARD SERVICE, and WARTS SHATT BY MEASURE FORM INC. SIT, and BITCHIS OF ACCESSANCE WIS COPY DATA WARTS SELECTION OF A POOR STANDARD SERVICE COLUMN AND A PROPERTY OF A POOR STANDARD SERVICE COLUMN AND A POOR SERVICE OF A POOR MARKET SERVICE AND A POOR SERVICE SERVICE OF A POOR SERVICE OF SOCIOLOGICAL STANDARD SERVICE SERVICE SERVICE SERVICE OF A POOR SERVICE SER

PLAN

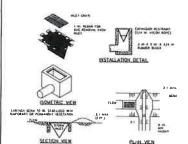
CONTROL

SEDIMENT


EROSION AND

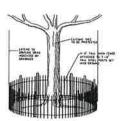
HATFIELD

Holmes Cunningham LLC 350 E Buller Ave., Sle 106 New Britain, PA 18901 (215) 586-3330 www.hoengineering.net


1727 CS.O Eroslon.dwg 2024 Sheart Sheart

> Drawing No. C5.0

STATE OF THE PART IS ASSESSED IN THE CONTRACTOR INC. many) than at created fitte statement to a surjetic female statement and rest to present successful to the statement of the statement of the surjetic females.

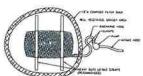

STANDARD CONSTRUCTION DETAIL 43-1 ROCK CONSTRUCTION ENTRANCE

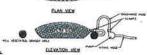
HALF PROTECTION SHALL NOT BE RECLAMED FOR MEET INGS

with.

STANDARD CONSTRUCTION DETAIL #4-16 FILTER BAG INLET PROTECTION - TYPE M INLET

TREE PROTECTION FENCING DETAIL


SECTION Y-Y



MAL APONS SHALL BE CONSTRUCTED TO THE DIMENSIONS SHOWN TERMINAL MODIS SHALL BE ADAPTED AS RECESSARY TO MATCH RECENSES CHARGES ALL APPEARS SHALL ME MEMORIES AT LEAST WELLET AND AFTER CACH BLANGEF EVENT DEPLACED RAMAR WITHIN THE APPEAR SHALL BE REPLACED IMMEDIATELY

STANDARD CONSTRUCTION DETAIL #5-1 RIPRAP APRON AT PIPE OUTLET WITH FLARED END SECTION OR ENDWALL

UTILITY TRENCHING CUIDELINES

the stated from a filter and and true of the state of the

ACCOUNT TRANSPORT OF ADJUST CONTROL OF A CAST CONTROL OF A DISTANCE OF A STATE OF A STAT HE PLAY CONTRACT HERE SHALL BE HOSPITED HID THE BACK IN THE MANNER SPECIAGO BY THE MANNER SPECIAGO BY THE MANNER AND MEDICAL CLAMPED A PRICE OF PIC PRICE OF RECOVERABLED FOR Last Evenement INC PLANNE SALL SHELL BE NO DECAUSE DEEN 150 OWN DE 1/2 INC MARINEN SPECHED BY DIE MENGFACHERER, MICHELYER IS LEXT. PUMP WHARES DALL BE FEDATED AND SOMEDIED. FAIRE SAIS SHALL BE INSPECTED OUT. I AND PROBLEM IN THE TANK A SHALL SHA STANDARD CONSTRUCTION DETAIL 43-18
PUMPED WATER FILTER BAQ

INC. WILL MAN AND AND TO MAKE THE MANDERS FROM AN OFF SITE COCATION, INC. OLDER THE MALE THROUGH THE PARTY OF THE PROPERTY OF

A TORRIO COMMENTA DE SERVICIO COMMENTA DEL CONTROLLO SE C

INCOMPACTO ENIRANCE WILL BE HISPECIED AS DIS LINO OF EACH NORE DAY ENI-THEORETS ALL BE CONSTANTLY MANYAMED TO DIE SPECIFIED DESCRISOR BY ADDRESS ROLE & SECRET, OF ROCE MAINEAR MILL BE MANKAMED OF HIS STE FOR DIES

SEFONG NOTES

- TEMPORARY SECONG SHALL BE COME IN AREAS WHILE NO ACTIVITY MORE WILL BE PERFORMED. ANY DISTARRED AREA ON WHICH ACTIVITY HAS CRASED MAST BE SECOND AND MAJORED DIMEDIATELY.
- DATEND HON-CEROMARHY PERCOS, ONLY MUSCH MUST BE APPLIED AT DIE RECEMBENDED BATES AREAS MACHED DUBLIED. DIE RON-CEROMARHY PERCOSA, MUST DE MUSC. PERTUZZO, SECRED, AND MACHED MUSCUSZETY PERCOPAND THE DAY OF
- DETARRIO BALLES HINET ARE NOT AT PHOSHED ERADE AND WHICH MILE RETAINING WHICH ONE (1) TEAR MAY BE SEEDED AND MAKING WITH A QUICK GROWNO HANDREAST SEED MATURE.
- DISTURNED AREAS MOCH ARE AT EITHER FINISHED GRADE ON MILL NOT BE DISTURBED AGAIN WITHIN ONE (1) YEAR MUST BE SELDED WITH A PERMANENT SIED DUTTURE AND MULDICED
- DEFINENCE COLOR MAN A PROPERTY AND A STATE OF THE COLOR OF THE COLOR OF THE STATE OF THE COLOR O

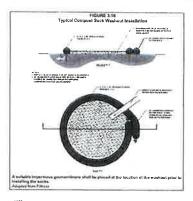
E APPLY HAS ON STRAW INCLES ON ACCORDANCE WITH SECTION FOR, 4) AS A WATE OF THREE (4) TONG FER ADM.
ALL SEED SHALL BE LANGLED DATED AND DURLIT CONSISTENT THIS SECTION FOR, 2 PERMANENT SEEDING

DETUREZO AREAS MINON APE LIBHER AT FRUSHLO CEADE DE WILL HOT DE DISTUREZO ACIAN MEDIAN ONE (1) YEAR HUST DE SECOLO METH A PERMANENT SEED MINTURE AND MULOHEO

SECONG STAIL BE ONE CLOSED PERCENT FROM AND TAIN TO DETORER PE, LANCES OFFICIALS CHICAGO & MEDIC O BONE ATTER OCTORER 1", DOWNAME SEED LIGHT BE VALO AND DESIMBLED AREAS MAST BE MALDECO

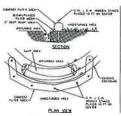
A the control of the

Filedam Million Fire solders, solved some edital


ACT TO ACT IN A

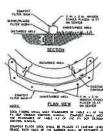
CHI BEDING FOR SPECIA, MICH CHRIST, POIS ENDINANCHE LEVEL DIVERSON DIMMICLE, ETC.)

MACHINE THE AME I I HAVE IN HER TO SEE A PRINCIPAL PLANT THE PERSON BEEN A PRINCIPAL PERSON BEEN A PRI


THE SECURITY OF THE SECURITY O

METTING / EROSEON CONTROL BLANCETS - THE USE AND HIS HALLATION OF EROSEON CONTROL BLANCETS OR METTING SAME BY ACCOMMANCE WITH THE HAND-FACILISED'S SPECIFICATION AND SHALL BE SCIENCED FOR THE PAGES.

CONCRETE WASADUT SHALL BE PLACED IN A FLAT, WELL-VEGETATED AREA NOT ADJACENT TO ANY STORMWATER WILLTS OR SURFACE WATERS

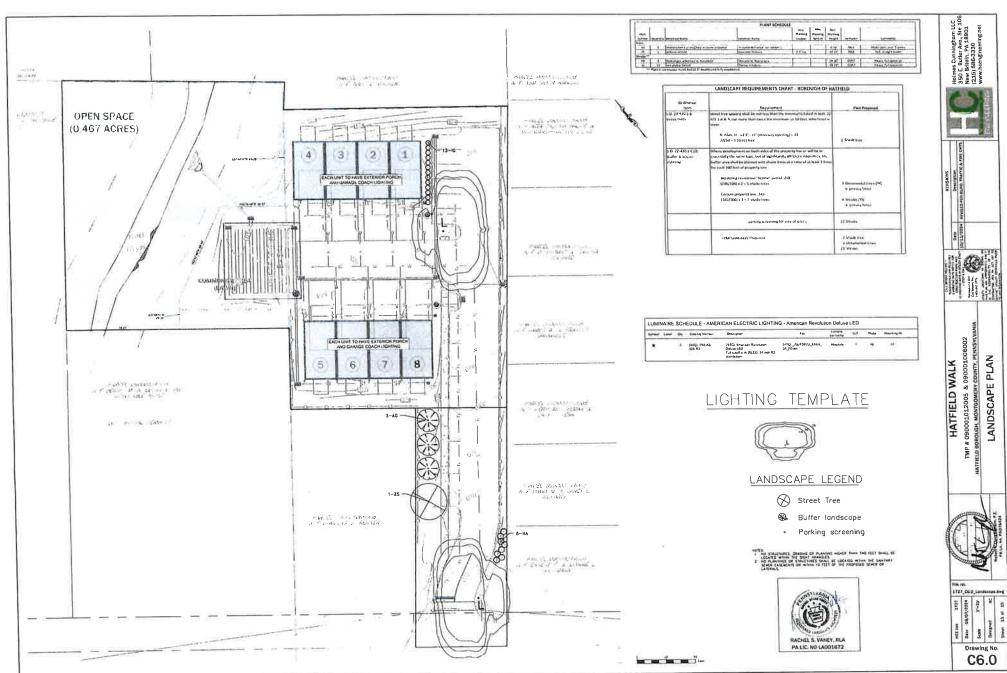

CONCRETE WASHOUT DETAIL

EDGS FARRIC SHALL MEET STANDARDS OF FARLE 4-1 OF THE PA OLF ESTADA COLUMN MANUAL COMPERT SHALL MEET THE STANDARDS OF TAKES 4-2 OF THE PA OLF THROUGH COMPOS I IN ICE SOCIE DULL ME WANTE OF SERVICE AND MARKET THE WASHEST OF THE WANTE OF THE WASHEST OF THE WASHES ACCIDINATED SECURITY SAME AT SEMENTS WHAT IS SEARCES 1/2 BUT ABOUT CHIMAN NEEDS OF THE BARBON AND DEPOTES IN THE GRANDES SELECTED CLERACES OF THE PLAN COMPOSE FRIES SOCIAS SMALL SE WESPICTED WEEKLY AND AFILE EACH RUNDEF SYCHI.
DANACED SOCIAS SMALL SE SEPARTED ACCORDING TO MANAFACTURES SEPERICATIONS ON
REPLACED WHICH IS TRUSH OF POSICION. RECORDER COMPOST FAITH THESE SHALL BE REPLACED ATTER & MOMINS, PROTECTIONADARS SOCIAS ATTER T BEAR FOL PROPRIENT MOCKS SHALL BE REPLACED. UPON STABILIZATION OF THE AREA INSULINARY TO THE SOCIE, STAKES DUAL BE REMOVED IN SOCIA MAY BE LEFT IN PLACE AND WICKLIATED OR REMOVED, IN THE LATTER CASE, THE MESH FULL BE OUT OTHER AND THE MULDI-SPECIAL AS A DIST, EMPRECIALLY

COMPOST FILTER SOCK WITH J HOOK
AGE TO SEALE

PLAN VIEW PROFILE

STOCKPILE AREA DETAIL


COMPOST FILTER MEEK MIST BE PLACED DOWNSLOPE OF ALL STOCKPALES MINDWATELY APPLY PEMPERARY SEEDING TO ALL STOCKPALES WINDS WILL REMAIN IN PLACE TO DAYS OR MORE

STEE CEO Ensue dag HCE JE Date Davigs

EROSION AND SEDIMENT COUNTY, PERMISTAN EROSION AND SEDIMENT CONTROL DETAILS TMP # 090001012005 & 090001006002

HATFIELD WALK

Drawing No. C5.1

GENERAL LANDSCAPE PLANTING NOTES

PLANING HAILPARS

- MANUE OF PLANTS AS DESCRIMED ON THE PLANT CONTIGON TO THOSE CINEN BY "SLANDARDIZED PLANT MANUES", 1943 EDITION PREPARED BY THE MADDICAN COUNT COMMITTEE ON HORIBIDATURES MONEYCLATURE, MANUES OF PLANT VARIETIES HOT MICHOLOGY THREW CONTIGON TO MANUES CHARGING.
- STREET, FOR THE LANGE TREAT SOOT BELL AND COLUMN ON THE PLANT METCHAS UNTIL BE IN ACCORDANCE WITH CONTINUES AS SET FORTH AS THE CONTINUES OF THE AMERICAN STRONG OF MERCENTRIAN PLANT WAS BELL AS SET FORTH AS THE CONTINUES OF THE AMERICAN STRONG OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE CONTINUES OF THE AMERICAN STRONG OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE AMERICAN PLANT WAS BELL AS THE CONTINUES OF THE CONT
- 4 INC COMERCION SMALL HOT MAKE SUBSTITUENCE IF ING SPECIFIC LANGUAGE MATERIAL IS NOT OBJANUAGE, THE COMERCION SMALL SUBMIT PROOF OF HON-AMAGNITY TO THE LANGUAGE ARCHITECT AND DIRECT TOCKTHER WITH A WRITTON PROPERLY TOO USE OF AN EQUIPACION MATERIAL.
- THE AMERICAN MICHIEST AND REPORT AND INSTRUCT AS NOT USE OFFER AMERICAN OF COMPANIES AND REPORT AND ASSESSMENT OF THE AMERICAN ASSESSMENT ASSES

Parent Strat

- HALF SEPARAL BUT, INCAPACING ON THE SEPARAL EMPERATOR WIT PLANTING SEA, AND IDPSON CROIDER AT INS SPECIFICATION FRANCISCO SERVICE AND INCAPACING AND INCAPACING SERVICES. AND INCAPACING SERVICES AND INCAPACING SERVICES AND INCAPACING SERVICES AND INCAPACING SERVICES. AND INCAPACING SERVICES AND INCAPACING SERVICES AND INCAPACING SERVICES AND INCAPACING SERVICES. AND INCAPACING SERVICES AND INCAPACING SERVICES AND INCAPACING SERVICES AND INCAPACING SERVICES.
- SUPPLICABLE WITH DRIVING OR MANUFACTURED TOPSOL FROM OUT SIT SCHROCKS WITH TOPSOL AND PLANTING SOL QUANTITIES ARE WISHIFFICIALL OUT AND SOLD OF CONTROL OF THE WISHIFFICIAL LAND DECK MARRIES OF CONTROL OF CONTR
- A COPY of Figuresian that are profes is will indicate a river of CARAL a decrease of Other based of Profession of Art Section of Other based of Profession of Other based of Profession of Other based of Other based of Art Section of Other based of Other based of Art Section of Other based of
- WHICH IS TRANS WORKING IN WITH THE WEST OF THE WEST OF THE CONTINUE TEZ? HINN IS ONLY SECULORIES OF THE DESCRIPTION OF THE WEST OF THE WES
- The SEASON IS WELL THE BOTH THE SEASON SERVICE THE SEASON SERVICE STATE OF THE SEASON SERVICE SERVICE
- by Academia Shall Press, at Jacobille San Miller in a later grouperful elither heaven, for extract these parts or exceed a of at Canadamia Deal Andread Sec. Academia of the later for the later of the
- THE LIBERT IS WELCOME, THE SHARE OF MATERIAL WIN EXECUTED IN WELCOMES, HE COTACL CRECING MATERIAL CONTINUES OF THE CONTINUES
- # SCARFE MAJOR BY ARE CONFACTED SUBSOLS PEOP TO ADDING PLANTING SOL ON TOPSOL PLANTING SOLD AND TOPSOL SHALL BE PLACED IN A FROIGH ON MEDIOT COMPACTE OF SHALL BE PLACED IN A FROIGH ON MEDIOT COMPACT.

- PADMACIO MATERIALE PADMACIO MATERIALE SHILL ME DILINERGO IN CONTAINERS SHOWNER MEICH, ANALTES, AND HAME OF MANUFACTURES MATERIALE SHALL BE PROTECTED FROM DETERMATION DUTING DELIVERY, AND MINE STORED AT SIT
- THIS HOW SHARE THE SUPPLICIES WHAT THEMSE TRIES AND SHILDS OUT FOR THE CHORMES SEASON FOR MADE THE SELECTION OF NO PRACE THEM IN MINISTRY WHICH IN CHIEF THE THE SELECTION AND ALL ADDITION ACCOUNTED TO ADDITION OF NOT-DE
- ALL PLANTS BACK DE BALLES ONE SERVICES OF CONTRACTA DESCRIPTION AND ACCURATE OF CONTRACT CONTRACTOR OF ALL CONTRACT OF A SERVICES OF A SERVICE AND ACCURATE OF A SERVICE AND ACCURATE ACCURATE AND ACCURATE ACCURAT
- INC CONTRACTOR D-VALL HAVE TREES AND D-MAND OLDWING DO STIC AS TER PREPARATERS FOR PLANSING HAVE BEEN CONTRECTED AND PLANSING HAVE BEEN FROM D-MINES IN SHARE PROTECTED AND ACCOUNTED TO BEEN AND D-MINES IN SHARE PROTECTED AND MICHIGHT FOR FOR MINES AND MINES IN SHARE PROTECTED AND MINES AND MINES
- INC CONTRACTOR SHALL MEN'T THE LOCATION OF ALL CHISTING UNDERSTOOMS UNTILT AND SERIE LINES FROM TO THE START OF CACAMITON ACCONTRACT FROM THE APPROPRIES FROM THE CONTRACTOR SHALL SHAPE FROM ANY DAMAGE.
- INL COMBACTOR TO STACE OUT PLANERS LOCABORS, FOR REVIEW AND APPROVAL BY DIE LANDSCAPE ARCHITECT AND/OR OWNER BEFORE PLANERS
 WERE BLOWS THE LANDSCAPE ARCHITECT AND/OR OWNER SOUL DUEST INIC COMBACTOR IN THE PRINCE PLACEGIES OF ALL PLANT LANDROGLAND OF PARTHER USES TO CHAPTE CONTINUES. WHIS ESSEN DIESTIT UNITED VALUES AND STATE OF ALL PLANT LANDROGLAND OF THE PRINCE OF THE PRINCE
-) NO PLANT STALL BE PUT INTO THE CHUNO REFORE THISHID GRASHIC HAS BELLIN COMPLETED AND APPROXICE BY THE PREJECT LANGSCAPE ARCHITECT OF PROJECT LANGSCAPE ARCHITECT
- 4 NO PLANENCS ON STRUCTURES SHALL BE LOCATED WHICH INC SANIARY SEARN ESACUENTS ON WITHIN TO FEEL OF THE PROPOSED SERTIN ON
- 5 ALL LANDSCAPIO ABLAS TO BE CLARED OF MOCKS, SHAPPS, IRASH AND DINER UNSIGNITY DEBTS ALL THE CHARED ANTAS SHOULD BE HAND BRADES SHOOM CLARINGING ANY CLARES AND UNIVERS SHEARES PROB TO PLANTING OR MECOING.
- ALL PLANT MATERIAL SHALL BE DISTALLED AS PER DETAILS HOLES AND CONTRACT SPECIFICATIONS THE LANGICUPE APOSITED MAY REVEN DISTALLATION AND MARKETURE PROCEDURES
- 7 THE CONTRACTOR SHALL ACED AREA DERAN DERANG SELVARY AND INSTALLATION OF PLANT MARRIAGES, REMOVE AND OFSPOSE OF OFF-SITE ANY ACCUMULATED BERRIS OR UNUSED MATERIALS REPAR DIMACE TO ADMICENT AREAS CAUSED BY LANDSCAPE INSTALLATION OPERATIONS.
- A MER PLANT & PLACED IN THEE PIT LOCATION, ME THANK HOLDING BODT BALL TOCKHER SHOULD BE COMPLETELY REMOVED AND THE MIREAU SHOULD BE PLACED DOWN SO 1/3 OF PIC PODT BALL IS EMPOSED STRINGED BALLEY SHOULD BE COMPLETELY REMOVED AN FER INSTALLED BY
- I MULEY SHELD HOT BE FILE UP ARCINO THE TRUE OF ANY FLANT MATERIAL HO MACH ON TOPSUS, SHELD HE TOLDHING THE BASE OF THE BRANE MEDIC THE ROOT CALLAR.
- IN ALL PLANTS SHALL BE WATERED INCOLOURS (INC. DURING THE FREST 14-MOVE PERSON AFTER PLANTING ALL PLANTS SHALL INCH BE MATERED MEETER ON AS REQUIRED BY BIT AND MELLING CONDITIONS TO MANTAIN MECHANISMS AND REQUIRE PLANTING CONDITION.
- IS AFTER COMPLIENT OF A PRILECT, ALL EMPOSED GROUND SUBFACES THAT LIKE HOT PAYED WITHIN THE CONTRACT LEATURE, AND THAT ARE HOT COMPLETE BY LANGUAGE PRANTING OF SUBFACE AS STOCKED, SHALL BY CONCRED BY A SHIELDING MARROWDE BARR OF APPROVED COMPLEMENT HAAR ALL PREFAIR SON LEADING HAS THE CAMPAGNED FOR OFF DEED IN THE CONCRED BY A SHIELDING MARROWDE BARR OF APPROVED COMPLEMENT HAAR ALL PREFAIR SON LEADING THE CONTRACT OF THE STOCKED BARR OF APPROVED COMPLEMENT HAAR ALL PREFAIR SON LEADING THE CONTRACT OF THE STOCKED BARR OF APPROVED COMPLEMENT HAAR ALL PREFAIR SON LEADING THE CONTRACT OF THE STOCKED BARR OF THE STOCKED BAR CUMMANICE
- I MEN PLANT MATERIA, SHALL BE CHARANTED TO BE ALVE AND IN MEDICATE ENDING CONDISON FOR A PERSON OF THE WORLDS FOLLOWING ACCEPTANCE IS THE CONCER PLANT MATERIA CEASE TO BE UNHALTHY, OTHER DEAD OF DATE OF PERSON, SHALL BE RELOVED AND REPLACED IN AND BY THE CONTINUENT AS THE DEAD OF THE ONE OF THE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OFFICE OF THE OFFICE OF THE OFFICE OF THE OFFICE OFFICE OF THE OFFICE OFFICE OFFICE OF THE OFFICE OFFICE

CENERAL LICHTING NOTES

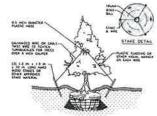
- CONNECTION TO CONTRACT OF THE TANK OF T
- CONTRACTOR TO OPENATE CACH LUMBERS AT RES INSTALLATION AND CONNECTION INSPECT FOR IMPROPER COUNTERSONS AND OPERATION
- AND AND ADJUST ALL CHEMINAPES TO PROVIDE RELIAMMENTS IN AS DISTRIBUTION AS INCIDENCE ON THE CONSTRUCTION DRAWNES OR AS ORIENTED BY THE CAMESCAPE ARDOTTED AND DRAWNES ON AS
- DESTALLATION OF ALL CICHING FIRELESS, POLCS, FOR DESCENDINGS, AND FILTER CAREE TO BE COMMONABLE WITH ALL BIE MORE TRACES TO ANDO CONTUCT M DE FRINGETO MAD PROPERTO ADDR.
- AL SIE LICHTURG RELATED WORK AND MATCHIALS SHALL COMPLY WITH CITY, COMPTY, AND OTHER APPLICABLE COMPRISING AUTHORITY
- 3 SIE ELECIECAL COMBIACION TO COORDINATE LOCATION OF EASEASTS UNDERFORMED UTBURES AND DRAMACE BEFORE OBLING POLE BASES SIT (LECHICAL CONTRACTOR TO CONDANATE MOREE SOURCE WITH LIGHT PERMICS TO INSURE ALL DIC LIGHTING IS OPERATING EFFECTIVELY CFFDCBMLT AND SAFELY
- SETE ELECTRICAL CONTRACTOR SHALL CONFIRM THAT LIGHT FINITURES MAION SPECIFICATIONS ON THE PLANS
- TO BUTCH TO ELECTRATICATION PLAN BY DIRECT TON PROMERS ADEDUATE PONCE FOR SIX LIDITIAS.
- THE POLICE FOUNDATIONS SPEELS BOT BY POUND OF TREE STANDING WATER IS PRESENT IN EXCAVATION AREA.
- ELECTRICIAN AND WESTALLARDS OF WALL MOUNTED FINDURES SHALL BE COMMUNICATED WITH THE ARCHITECTURAL STRUCTURAL AND SIE ORAMINES FOR SAFTY AND TO PROMOTE FEROSED WIRES.

LAWN SEED NOTES:

- I PROOR TO SECONG, MACA IS TO BE TOPSOILED, FINE GRADED, AND RAVED OF ALL DEBRS LARGER THAN 2" DRAWLIER
- 2 THE PERCONNEL LIEB HAS SHALL BE SOME AT THE BATES AS DEPOSITE

1 1/3 (NB /1,000 S/ 1 1811 /1.000 S/ 1 1/7 (NB /1.000 S/ 1 185 /1.000 S/

- 3 HEED WAS THAT IS MULTICALE WHO SALT HAT OF CHIRETED SWALL DRAW ENGAGE AT A BANK OF J. MANY/AC DA SO UNIX/1200. SF
- . SEEONG DATES FOR THIS MUSICAL SHALL BE AS FOLLOWS:
- SPENC APRIL 1 MAY 31 FALL MUCUSI 16 DCIONER 2
- 5 CERMANION RATES WILL WART AS TO THE OF YEAR FOR SOMING. CONTRACTOR TO MRECATE SECOND AREA UNITE, AN ACCEPTABLE STAND OF COVER IS ESTABLISHED BY DIRECT

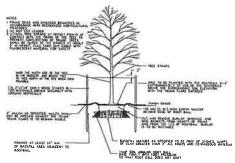

TREE PROTECTION NOTES:

- I ALL EASTING SHADE TREES WHICH THE LAMBS OF TREE PROTECTION FENCING AND AS DIRECTED BY THE LANDSCAPE ARCHITECT SHALL BE PROTECTED THROUGHOUT THE DURALIDM OF WORK
- MEMORITON AND CHARMS WORK ASSECTION IS PRINTED THESE SPANE OF PRIFORMED BY A CHARMED PROPERTY WITH A MEMORITOR OF THE (S) WENE EXPENSED A MORNEY WITH EXCLANATION CHARMED TO PROPERTY AND MAJOR ADMINIST MAKED SHARED CHARMED WITH EXCENSE OF THE STAND SHARED SHARED WITH CHARMED WITH CHARMED WITH CHARMED WITH CHARMED WITH CHARMED WITH SHARED WITH CHARMED WITH
- 3. TO LONGLOZE DISTURBANCE OF VECETATION TO REMAIN, ALL TREE STUMPS TO BE RELIEVED WITHIN TO OF TREE PROTECTION FENCE SHALL BE REJULTED USING A STUMP CRINDER
- 4 ALL EMPOSED TREE MOOTS SHALL BE THOROUGHLY TRANSATED ON A DALT BASIS UNTIL BACKFILLING CAN OCCUR AS DIRECTED BY THE PROJECT LANDSCAPE ARCHITECY
- 5 ALL MONK TO BE PERFORMED UNDER THE DHIECT SUPERVISION OF DTHER THE OWNER'S REPRESENTATIVE OR PROJECT. LANDSCAPE ABOUTED: MOTHET OWNER A MINIMUM OF 48 HOURS PRIOR TO ANY EARTHWORK / EXCAVATION WORK.

PLAN NOTES:

- A THE NUMBERS OF THE SENERGY AND RANGE OF A PERS WIDT ON MARCH 5, 2019 AND ARE NOT RANGE OF THE SENERGY BITS SECRET ON DARRING CO.I.

 3 OF TRANSPORT OF THE SENERGY OF TRANSPORT OWN ROW (TET SHALL BE LOCATED BY THAN SOMET
- THE CONTROL OF THE CONTROL OF THE LANGE PARK BE ALLISTED WHEN EACH OUT FROM THE LOCATIONS OF PROCEED ON THE LANGE PRICE PLAN , AND AS APPROVED BY THE CONTROL BE LANGE PARK AND THE PARK AND THE LANGE PARK AND THE PARK AND


- 2 ASSURE THAT THE BEARDE SURVICE OF THE PROJECTIVE COVERNS OF THE WIRE OR
- REMAINS AND STARRE AS SOON AS INCIDENT HAS CROWN SUPPERENT ROOTS TO OVER-COME THE PROBLEM THAT MEDICARD THE TREET TO BE STAKED STAKES SHALL BE RELEASED AND LIEBER HAND THE FAIR OF THE TREET CHORMAGE STAKES SHALL BE RELEASED AND LIEBER HAND THE FAIR OF THE TREET CHORMAGE STAKEN TREES ADMINIST OD AND MEED ID HE STAND AND STANDE ON HE MANUFA. TO THE TREE STANDARD AND DONE ONLY WITH THE APRIDME OF THE LANGUAGE ARCHITECT OF THE LANGUAGE THAT THE TREE WILL NOT HE ABOUT TO SUPPORT ITSELF
- WAS CA CASE SITES SHALL BE AS FOLLOWS.

 TREES UP TO 3 5 MEN CAUPER 14 CAUGE

 TREES 25 MEN TO 3 MEN EAUPER 12 CAUGE
- LEMIEN WAS OR CASE DALY DROUGH TO SEEP FROM SUPPING ALLOW FOR SOME TRANS MOMENTAL PLASTIC HOST SHALL BE LONG ENOUGH TO ACCOUNDED IT 5 MEN FUCH ANY LODGE ENES OF THE WARE OR CURLE INTO THE WARE WELD SEE THAT HO DURP MIRE ENDS AND EXPOSED

EVERGREEN TREE STAKING DETAIL

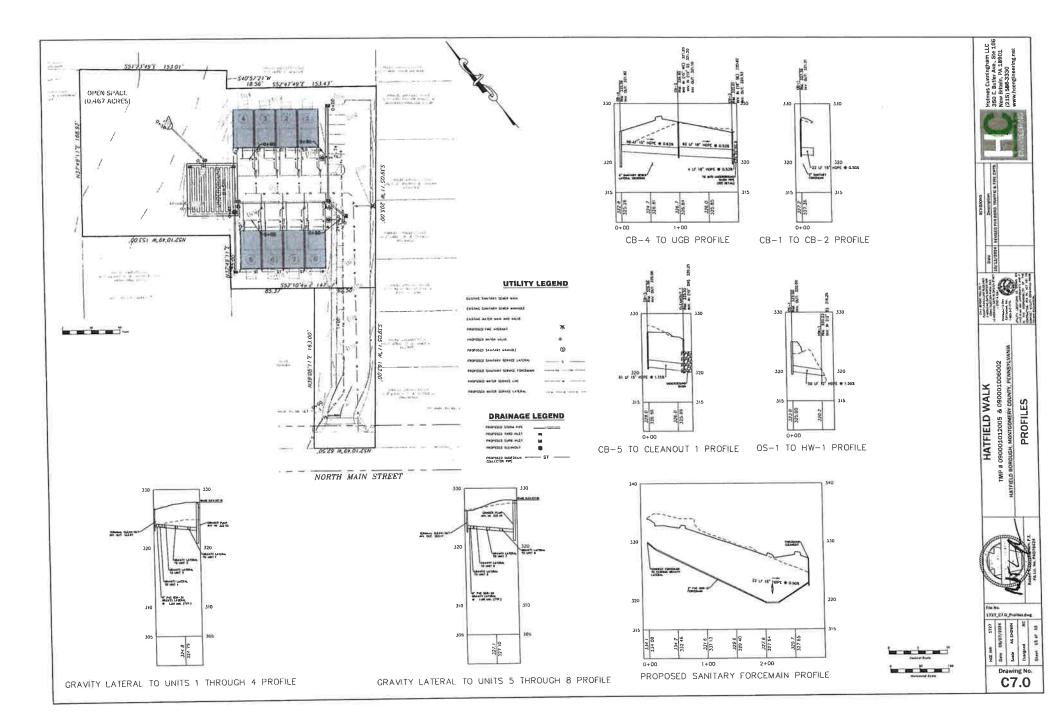
ORNAMENTAL AND SHADE TREE PLANTING/ STAKING DETAIL

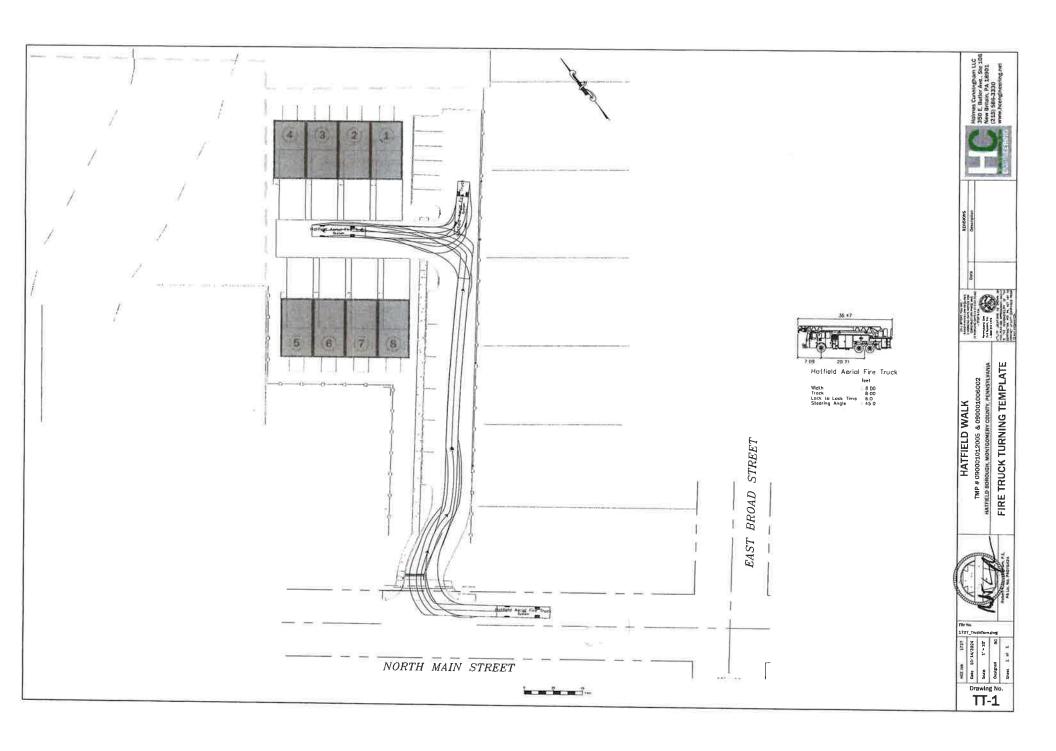
RACHEL S. VAHEY, RLA PA LIC. NO LA001672 Drawing No.

2

E. Butter Ave., Ste 1 Britain, PA 18901 Steadineering not

DETAILS


TMP # 090001012005 & 090001006002 HATFELD BOROUGH, MONTGOMERY COUNTY, PÉNNSYLVANIA HATFIELD WALK LANDSCAPE



1727_C6 O_Landscope.dwg

HTS. Scale Sealers

C6.1

Updated Traffic Study 10.18.2024

Info@TPDinc.com

PROPOSED HATFIELD HOMES RESIDENTIAL

Transportation Impact Assessment Hatfield Borough, Montgomery County, PA

For Submission To: Hatfield Borough

PROPOSED HATFIELD HOMES RESIDENTIAL TRANSPORTATION IMPACT ASSESSMENT

FOR SUBMISSION TO:

Hatfield Borough, Montgomery County, PA

Prepared For:

Pennington Property Group Ben Golthorp

P.O. Box 35 Chalfont, PA 18914

Phone: (267) 767-0876

October 18, 2024

TPD # PNPG.00002

Prepared By:

Traffic Planning and Design, Inc.

1720 Spillman Drive, Suite 260 Bethlehem, Pennsylvania 18015

Phone: (610) 625-4242 E-mail: TPD@TPDinc.com Website: www.TPDinc.com

Matthew I. Hammond, P.E.

Executive Vice President
Pennsylvania License Number 071037

PROPOSED HATFIELD HOMES RESIDENTIAL

Transportation Impact Assessment
Hatfield Borough, Montgomery County, PA

For Submission To:

Hatfield Borough

PROPOSED HATFIELD HOMES RESIDENTIAL TRANSPORTATION IMPACT ASSESSMENT

FOR SUBMISSION TO:

Hatfield Borough, Montgomery County, PA

Prepared For:
Pennington Property Group
Ben Golthorp
P.O. Box 35
Chalfont, PA 18914

Phone: (267) 767-0876

October 18, 2024

TPD # PNPG.00002

Prepared By:

Traffic Planning and Design, Inc.

1720 Spillman Drive, Suite 260 Bethlehem, Pennsylvania 18015

Phone: (610) 625-4242 E-mail: TPD@TPDinc.com Website: www.TPDinc.com

Matthew I. Hammond, P.E.

Executive Vice President
Pennsylvania License Number 071037

TABLE OF CONTENTS

EXECUTIVE SUMMARY	
INTRODUCTION1	
EXISTING ROADWAY NETWORK1	
EXISTING TRAFFIC CONDITIONS2	
BASE (NO-BUILD) CONDITIONS3	
PROPOSED SITE ACCESS3	
TRIP GENERATION4	
TRIP DISTRIBUTION5	
PROJECTED (BUILD) CONDITION TRAFFIC VOLUMES5	
LEVELS OF SERVICE FOR AN INTERSECTION5	
CAPACITY ANALYSIS METHODOLOGY6	
LEVELS OF SERVICE IN THE STUDY AREA7	
QUEUE ANALYSIS7	
GAP ANALYSIS8	
AUXILIARY TURN LANE ANALYSIS9	
RECOMMENDATIONS AND CONCLUSIONS9	

FIGURES 1 – 7

TECHNICAL APPENDICES

Appendix A: Project Correspondence
Appendix B: Traffic Count Printouts

Appendix C: Traffic Volume Development Data

Appendix D: Critical and Follow-up Headway Calculations

Appendix E: Capacity Analysis Worksheets
Appendix F: PennDOT-Approved Signal Plan

Appendix G: Gap Analysis

Appendix H: Auxiliary Turn Lane Warrant Analyses

EXECUTIVE SUMMARY

The purpose of this study is to examine the potential traffic impact associated with the proposed residential development in Hatfield Borough, Montgomery County, PA. Based on this evaluation, the following conclusions were reached:

- 1. The study area intersections included in this Transportation Impact Assessment (TIA) are listed below:
 - » Main Street (N/S) & Broad Street (E/W).
 - » N. Main Street & Proposed Site Driveway.
- 2. The project site is currently undeveloped and is located on the eastern (northbound) side of N. Main Street, approximately 200-feet north of the intersection of Main Street (N/S) & Broad Street (E/W). The proposed site will consist of eight (8) townhomes.
- 3. Access to the site will be served by one (1) full-access driveway to N. Main Street.
- 4. Traffic volumes for the study area intersections were determined based on a previous turning movement count conducted by TPD at the intersection of Main Street (N/S) & Broad Street (E/W) on Tuesday, March 29, 2022. Furthermore, TPD balanced the traffic volumes along N. Main Street at the proposed site driveway utilizing the count information.
- 5. A growth factor of 1.0042 (0.21% per year, compounded for two (2) years) was applied to the 2022 traffic volumes to produce 2024 existing condition traffic volumes.
- **6.** The 2024 existing traffic volumes where then grown by applying a growth factor of 1.0042 (0.21% per year, compounded for two (2) years) to produce 2026 base condition traffic volumes.
- Upon full build-out of the site, the proposed development is expected to generate approximately 4
 new trips during the weekday A.M. peak hour and 5 new trips during the weekday P.M. peak hour.
- 8. The new trips generated by the proposed development where then added to the 2026 base condition traffic volumes to development 2026 projected (build) conditions traffic volumes.
- Turn lane warrants <u>are not met</u> for a left-turn or right-turn lane on N. Main Street at the Proposed Site Driveway under 2026 projected conditions.
- 10. Traffic Planning and Design, Inc. (TPD) recommends the following roadway improvements as outlined at the study area intersections:

N. Main Street & Proposed Site Driveway

- » Provide a stop sign (PennDOT designation R1-1) on the site driveway approach to control exiting traffic.
- » Provide proper pavement markings and signage at the site driveway to facilitate safe and efficient ingress and egress movements to/from the proposed site.
- 11. Levels of Service (LOS) for the study area intersections have been summarized in matrix form. **Table I** details the overall intersection LOS for each study area intersection.

Page

TABLE OF CONTENTS

	i i
EXECUTIVE SUMMARY	
INTRODUCTION	1
EXISTING ROADWAY NETWORK	1
EXISTING TRAFFIC CONDITIONS	2
BASE (NO-BUILD) CONDITIONS	3
PROPOSED SITE ACCESS	3
TRIP GENERATION	4
TRIP DISTRIBUTION	5
PROJECTED (BUILD) CONDITION TRAFFIC VOLUMES	5
LEVELS OF SERVICE FOR AN INTERSECTION	5
CAPACITY ANALYSIS METHODOLOGY	6
LEVELS OF SERVICE IN THE STUDY AREA	7
QUEUE ANALYSIS	7
GAP ANALYSIS	8
AUXILIARY TURN LANE ANALYSIS	9
RECOMMENDATIONS AND CONCLUSIONS	9

FIGURES 1 – 7

TECHNICAL APPENDICES

Appendix A: Project Correspondence
Appendix B: Traffic Count Printouts

Appendix C: Traffic Volume Development Data

Appendix D: Critical and Follow-up Headway Calculations

Appendix E: Capacity Analysis Worksheets
Appendix F: PennDOT-Approved Signal Plan

Appendix G: Gap Analysis

Appendix H: Auxiliary Turn Lane Warrant Analyses

EXECUTIVE SUMMARY

The purpose of this study is to examine the potential traffic impact associated with the proposed residential development in Hatfield Borough, Montgomery County, PA. Based on this evaluation, the following conclusions were reached:

- 1. The study area intersections included in this Transportation Impact Assessment (TIA) are listed below:
 - » Main Street (N/S) & Broad Street (E/W).
 - » N. Main Street & Proposed Site Driveway.
- 2. The project site is currently undeveloped and is located on the eastern (northbound) side of N. Main Street, approximately 200-feet north of the intersection of Main Street (N/S) & Broad Street (E/W). The proposed site will consist of eight (8) townhomes.
- 3. Access to the site will be served by one (1) full-access driveway to N. Main Street.
- 4. Traffic volumes for the study area intersections were determined based on a previous turning movement count conducted by TPD at the intersection of Main Street (N/S) & Broad Street (E/W) on Tuesday, March 29, 2022. Furthermore, TPD balanced the traffic volumes along N. Main Street at the proposed site driveway utilizing the count information.
- 5. A growth factor of 1.0042 (0.21% per year, compounded for two (2) years) was applied to the 2022 traffic volumes to produce 2024 existing condition traffic volumes.
- 6. The 2024 existing traffic volumes where then grown by applying a growth factor of 1.0042 (0.21% per year, compounded for two (2) years) to produce 2026 base condition traffic volumes.
- Upon full build-out of the site, the proposed development is expected to generate approximately 4
 new trips during the weekday A.M. peak hour and 5 new trips during the weekday P.M. peak hour.
- 8. The new trips generated by the proposed development where then added to the 2026 base condition traffic volumes to development 2026 projected (build) conditions traffic volumes.
- Turn lane warrants <u>are not met</u> for a left-turn or right-turn lane on N. Main Street at the Proposed Site Driveway under 2026 projected conditions.
- **10.** Traffic Planning and Design, Inc. (TPD) recommends the following roadway improvements as outlined at the study area intersections:

N. Main Street & Proposed Site Driveway

- » Provide a stop sign (PennDOT designation R1-1) on the site driveway approach to control exiting traffic.
- » Provide proper pavement markings and signage at the site driveway to facilitate safe and efficient ingress and egress movements to/from the proposed site.
- 11. Levels of Service (LOS) for the study area intersections have been summarized in matrix form. **Table I** details the overall intersection LOS for each study area intersection.

TABLE I LEVEL OF SERVICE (SECONDS) SUMMARY

	Movement	Weekd	ay A.M. Peak Hour		Weekday P.M. Peak Hour		
Intersection	(Existing /	Existing	Opening	Year 2026	Existing	Opening Year 2026	
	Proposed)	Condition	Base	Projected	Condition	Base	Projected
	EB L	B (15.7)	B (15.7)	B (15.8)	B (13.8)	B (13.9)	B (13.9)
	EB TR	C (24.6)	C (24.8)	C (24.9)	C (23.3)	C (23.5)	C (23.5)
	WB L	B (15.8)	B (15.9)	B (16.0)	B (14.3)	B (14.4)	B (14.4)
Main Street (N/S)	WB TR	C (22.4)	C (22.5)	C (22.6)	B (19.6)	B (19.7)	B (19.8)
8	NB L	B (17.4)	B (17.4)	B (17.5)	B (17.8)	B (17.8)	B (17.8)
Broad Street (E/W)	NB TR	B (18.9)	B (18.8)	B (18.8)	C (33.2)	C (33.4)	C (33.4)
5,525 211 551 (2,711)	SB L	B (14.2)	B (14.2)	B (14.2)	B (18.4)	B (18.4)	B (18.4)
	SB TR	D (35.3)	D (35.5)	D (35.9)	C (29.4)	C (29.5)	C (29.5)
	ILOS	C (25.8)	C (26.0)	C (26.1)	C (25.5)	C (25.7)	C (25.7)
N. Main Street	/ WB LR			B (11.1)	(44)	**	B (12.8)
N. Main Street &	/ SB LT	**		A (0.0)	122		A (9.7)
Proposed Site Driveway	ILOS			A (0.0)		7.5	A (0.0)

Base = No-Build scenario

Projected = Build scenario

ILOS = Overall Intersection Level of Service, Unsignalized ILOS calculated in accordance with Figure 5 of Policies and Procedures for Transportation Impact Studies

12. 95th percentile queue lengths for the study area intersection have been summarized in matrix form. Table II details the 95th percentile queue lengths at the study area intersection.

TABLE II 95TH PERCENTILE QUEUE ANALYSIS (FEET)

Intersection	Movement (Existing/	Storage (Existing/				.M. Peak Houi Year 2026
	Proposed)	Proposed)	Base	Projected	Base	Projected
	EB L	280	<25	<25	25	25
	EB TR		205	205	233	235
Main Street (N/S)	WBL	100	28	28	33	33
	WB TR	144	168	168	168	168
&	NB L	100	25	25	43	43
Broad Street (E/W)	NB TR	:##7	163	163	328	330
	SB L	1944	<25	<25	35	35
	SB TR	265	403	408	288	288
N. Main Street &	/ WB LR			<25	-	<25
Proposed Site Driveway	/ SB LT	722	45:	<25		<25

Base = No-Build scenario

Projected = Build scenario

INTRODUCTION

Traffic Planning and Design, Inc. (TPD) has completed a Transportation Impact Assessment (TIA) for the proposed Hatfield Homes residential development in Hatfield Borough, Montgomery County, Pennsylvania. The project site is currently undeveloped and is located on the eastern (northbound) side of N. Main Street, approximately 200-feet north of the intersection of Main Street (N/S) & Broad Street (E/W), as shown in **Figure 1**. As shown in **Figure 2**, the proposed site will consist of eight (8) townhomes. All relevant correspondence pertaining to this project has been included in **Appendix A**.

Site Access Location

Access to the site will be served by one (1) full-access driveway to N. Main Street.

EXISTING ROADWAY NETWORK

A field review of the existing roadway system in the study area was conducted. The existing roadway characteristics within the study area are summarized in **Table 1**.

TABLE 1
ROADWAY CHARACTERISTICS WITHIN STUDY AREA

, , , , , ,								
Roadway	Ownership	Functional Classification/ Roadway Type	Predominant Directional Orientation	Average Daily Traffic ¹	Posted Speed Limit			
S. Main Street (S.R. 0463) ²	State	Minor Arterial	North-South	12,828	25 mph			
N. Main Street ³	Local	Major Collector	North-South	11,050	25 mph			
E. Broad Street (S.R. 1003) ⁴	State	Minor Arterial	East-West	8,784	25 mph			
W. Broad Street (S.R. 0463) ⁵	State	Minor Arterial	East-West	7,469	25 mph			

^{1 =} AADT Data from PennDOT Traffic Information Repository (TIRe) website (Accessed October 2024)

Land Use Context

In Section 1.1 of the Design Manual, Part 2, Contextual Roadway Design, there is guidance pertaining to defining the land use context(s) for a given area. Based upon review of this information, the land uses surrounding the proposed site best fits the Suburban designation, as described below:

Suburban, areas with low to medium density (where single-family structures predominate, along with some multi-family and multistory commercial structures); mixed residential neighborhood and commercial clusters (including town centers, commercial corridors, big box commercial, and light industrial); and varied setbacks with some sidewalks and mostly off-street parking.

Roadway Type

In Section 1.2.1 of the Design Manual, Part 2, Contextual Roadway Design, there is guidance pertaining to defining the transportation context(s) for a given area. Comparing the existing condition roadway characteristics to the various options presented in Table 1.2, the study area roadways best fit the following categories, as described below:

Minor Arterial, corridors of regional or community importance connecting centers of activity.

^{2 =} South of Broad Street

^{3 =} North of Broad Street

I = East of Main Street

^{5 -} West of Main Street

TABLE I LEVEL OF SERVICE (SECONDS) SUMMARY

		EICTIES (C	O D D			A 72 - 32 - 32 - 32 - 32 - 32 - 32 - 32 -	A 20
	Movement	Weekd	ay A.M. Pea	ak Hour	Weekday P.M. Peak Hour		
Intersection	(Existing /	Existing	Opening	Year 2026	Existing	Opening	Year 2026
	Proposed)	Condition	Base	Projected	Condition	Base	Projected
	EB L	B (15.7)	B (15.7)	B (15.8)	B (13.8)	B (13.9)	B (13.9)
	EB TR	C (24.6)	C (24.8)	C (24.9)	C (23.3)	C (23.5)	C (23.5)
	WB L	B (15.8)	B (15.9)	B (16.0)	B (14.3)	B (14.4)	B (14.4)
Main Street (N/S)	WB TR	C (22.4)	C (22.5)	C (22.6)	B (19.6)	B (19.7)	B (19.8)
8	NB L	B (17.4)	B (17.4)	B (17.5)	B (17.8)	B (17.8)	B (17.8)
Broad Street (E/W)	NB TR	B (18.9)	B (18.8)	B (18.8)	C (33.2)	C (33.4)	C (33.4)
, , ,	SB L	B (14.2)	B (14.2)	B (14.2)	B (18.4)	B (18.4)	B (18.4)
	SB TR	D (35.3)	D (35.5)	D (35.9)	C (29.4)	C (29.5)	C (29.5)
	ILOS	C (25.8)	C (26.0)	C (26.1)	C (25.5)	C (25.7)	C (25.7)
N. Main Street	/WB LR	744		B (11.1)	85	277	B (12.8)
N. Main Street &	/ SB LT		22	A (0.0)	44	: **	A (9.7)
Proposed Site Driveway	ILOS	**	-	A (0.0)	211	:24	A (0.0)

Base = No-Build scenario

Projected = Build scenario

ILOS = Overall Intersection Level of Service; Unsignalized ILOS calculated in accordance with Figure 5 of Policies and Procedures for Transportation Impact Studies,

12. 95th percentile queue lengths for the study area intersection have been summarized in matrix form. Table II details the 95th percentile queue lengths at the study area intersection.

TABLE II 95TH PERCENTILE QUEUE ANALYSIS (FEET)

Intersection	Movement Storage (Existing/ (Existing/			.M. Peak Hour Year 2026	Weekday P.M. Peak Hour Opening Year 2026	
	Proposed)	Proposed)	Base	Projected	Base	Projected
	EB L	280	<25	<25	25	25
Main Street (N/S) & Broad Street (E/W)	EB TR	79-567	205	205	233	235
	WB L	100	28	28	33	33
	WB TR		168	168	168	168
	NB L	100	25	25	43	43
	NB TR	-	163	163	328	330
	SB L		<25	<25	35	35
	SB TR	265	403	408	288	288
N. Main Street &	/ WB LR		-	<25	24	<25
Proposed Site Driveway	/ SB LT	1641		<25	22	<25

Base = No-Build scenario

Projected = Build scenario

INTRODUCTION

Traffic Planning and Design, Inc. (TPD) has completed a Transportation Impact Assessment (TIA) for the proposed Hatfield Homes residential development in Hatfield Borough, Montgomery County, Pennsylvania. The project site is currently undeveloped and is located on the eastern (northbound) side of N. Main Street, approximately 200-feet north of the intersection of Main Street (N/S) & Broad Street (E/W), as shown in **Figure 1**. As shown in **Figure 2**, the proposed site will consist of eight (8) townhomes. All relevant correspondence pertaining to this project has been included in **Appendix A**.

Site Access Location

Access to the site will be served by one (1) full-access driveway to N. Main Street.

EXISTING ROADWAY NETWORK

A field review of the existing roadway system in the study area was conducted. The existing roadway characteristics within the study area are summarized in **Table 1**.

TABLE 1
ROADWAY CHARACTERISTICS WITHIN STUDY AREA

				•	
Roadway	Ownership	Functional Classification/ Roadway Type	Predominant Directional Orientation	Average Daily Traffic ¹	Posted Speed Limit
S. Main Street (S.R. 0463) ²	State	Minor Arterial	North-South	12,828	25 mph
N. Main Street ³	Local	Major Collector	North-South	11,050	25 mph
E. Broad Street (S.R. 1003) ⁴	State	Minor Arterial	East-West	8,784	25 mph
W. Broad Street (S.R. 0463) ⁵	State	Minor Arterial	East-West	7,469	25 mph

^{1 =} AADT Data from PennDOT Traffic Information Repository (TIRe) website (Accessed October 2024)

Land Use Context

In Section 1.1 of the Design Manual, Part 2, Contextual Roadway Design, there is guidance pertaining to defining the land use context(s) for a given area. Based upon review of this information, the land uses surrounding the proposed site best fits the Suburban designation, as described below:

Suburban, areas with low to medium density (where single-family structures predominate, along with some multi-family and multistory commercial structures); mixed residential neighborhood and commercial clusters (including town centers, commercial corridors, big box commercial, and light industrial); and varied setbacks with some sidewalks and mostly off-street parking.

Roadway Type

In Section 1.2.1 of the Design Manual, Part 2, Contextual Roadway Design, there is guidance pertaining to defining the transportation context(s) for a given area. Comparing the existing condition roadway characteristics to the various options presented in Table 1.2, the study area roadways best fit the following categories, as described below:

Minor Arterial, corridors of regional or community importance connecting centers of activity.

^{2 =} South of Broad Street

^{3 =} North of Broad Street

^{4 =} East of Main Street

^{5 -} West of Main Street

- » S. Main Street (S.R. 0463) south of Broad Street.
- » E. Broad Street (S.R. 1003) east of Main Street.
- » W. Broad Street (S.R. 0463) west of Main Street.

Collector, roadways of lower community importance providing connections between arterials and local roads.

» N. Main Street – north of Broad Street.

EXISTING TRAFFIC CONDITIONS

Intersection Turning Movement Counts

TPD conducted a turning movement count at the intersection of Main Street & Broad Street within the last three (3) years. Traffic counts at the signalized intersection were conducted on 15-minute intervals during the weekday morning (7:00 to 9:00 A.M.) and weekday evening (4:00 to 6:00 P.M.) peak periods. Peak hours and the count date for the signalized intersection are identified in **Table 2**.

TABLE 2
TRAFFIC COUNT INFORMATION

	D. I.T. W. Counts	Time	Intersection
Intersection	Date of Traffic Counts	Period	Peak Hour ¹
Azin Street (N/S) &		Weekday A.M.	7:30 to 8:30 A.M.
	Tuesday, March 29, 2022	Weekday P.M.	4:30 to 5:30 P.M.
	Intersection Main Street (N/S) & Broad Street (E/W)	fain Street (N/S) & Tuesday, March 29, 2022	Intersection Date of Traffic Counts Period Weekday A.M. Tuesday, March 29, 2022 Wooledow P.M.

^{1 =} Peak Hour consists of the four consecutive 15-minute intervals where the highest traffic volumes occur.

In order to determine the through traffic volumes along N. Main Street in the vicinity of the proposed driveway, TPD balanced the traffic volumes along N. Main Street utilizing the above count information. **Table 3** provides a summary of the 2022 existing condition (raw) traffic volumes.

TABLE 3
EXISTING COUNT INFORMATION

	2022 Raw Existing Traffic Volumes			
Time Period	NB volume	SB volume	Total	
Weekday A.M. Peak Hour	277	498	775	
Weekday P.M. Peak Hour	492	456	948	

Figure 3 shows the 2022 existing condition (raw) traffic volumes. Growth factors for August 2023 to July 2024 were obtained from the PennDOT Bureau of Planning and Research (BPR). The PennDOT BPR suggests using a background growth trend factor of 1.0042 (0.21% per year, compounded for two (2) years).

It should be noted that PennDOT BPR growth factors have recently been published for August 2024 to July 2025. The PennDOT BPR suggests using a background growth trend factor of 1.0034 (0.17% per year, compounded for two (2) years). As such, the growth factor for August 2023 to July 2024 was utilized to provide a more conservative analysis of background traffic growth. Therefore, TPD applied the 1.0042 growth trend factor to the 2022 raw traffic volumes to produce 2024 existing condition traffic volumes.

Page 2 — www.TPDinc.com

The 2024 existing condition traffic volumes for the weekday A.M. and weekday P.M. peak hours are shown in **Figure 4**. The turning movement traffic count is included in **Appendix B**.

BASE (NO-BUILD) CONDITIONS

Annual Background Growth

A background growth factor for the roadways in the study area was developed based on growth factors for August 2023 to July 2024 obtained from the PennDOT Bureau of Planning and Research (BPR). The PennDOT BPR suggests using a background growth trend factor of 0.21% per year in Montgomery County for urban non-interstate roadways.

It should be noted that PennDOT BPR growth factors have recently been published for August 2024 to July 2025. The PennDOT BPR suggests using a background growth trend factor of 1.0034 (0.17% per year, compounded for two (2) years). As such, the growth factor for August 2023 to July 2024 was utilized to provide a more conservative analysis of background traffic growth. The background growth factor was applied annually to yield overall growth percentages of 0.42% (0.21% per year, compounded over two (2) years) for the 2026 opening year.

Base (No-Build) Conditions Volume Development

The additional traffic volumes due to background growth were added to produce 2026 base (no-build) condition traffic volumes. The 2026 base condition traffic volumes for the weekday A.M. and weekday P.M. peak hours are illustrated in **Figure 5**.

PROPOSED SITE ACCESS

Access to the site will be served by one (1) full-access driveway to N. Main Street.

Sight Distance Analysis

A sight distance analysis was prepared for the proposed site driveway. In general, recommended safe sight distances depend upon the posted speed limit and roadway grades. The existing sight distances at the proposed driveways were measured in accordance with PennDOT Publication 282 <u>Highway Occupancy Permit Operations Manual</u> and compared to PennDOT's desirable sight distance standard, which is identified in 67 PA Code Chapter 441.8(h), "Access to and Occupancy of Highways by Driveways and Local Roads." In addition, measured sight distances at the proposed driveways were compared to PennDOT's safe stopping sight distance standard, which is calculated by the following equation:

$SSSD = 1.47VT + V^2/[30(f\pm g)]$

SSSD = safe stopping sight distance (acceptable sight distance)

V = Vehicle Speed

T = Perception Reaction Time of Driver (2.5 seconds)

f = Coefficient of Friction for Wet Pavements

g = Percent of Roadway Grade Divided by 100

Table 4 shows the measured, desirable, acceptable (SSSD), and required sight distances at the site driveway for vehicles entering and exiting the site.

- » S. Main Street (S.R. 0463) south of Broad Street.
- » E. Broad Street (S.R. 1003) east of Main Street.
- » W. Broad Street (S.R. 0463) west of Main Street.

Collector, roadways of lower community importance providing connections between arterials and local roads.

» N. Main Street – north of Broad Street.

EXISTING TRAFFIC CONDITIONS

Intersection Turning Movement Counts

TPD conducted a turning movement count at the intersection of Main Street & Broad Street within the last three (3) years. Traffic counts at the signalized intersection were conducted on 15-minute intervals during the weekday morning (7:00 to 9:00 A.M.) and weekday evening (4:00 to 6:00 P.M.) peak periods. Peak hours and the count date for the signalized intersection are identified in **Table 2**.

TABLE 2
TRAFFIC COUNT INFORMATION

Intersection	Date of Traffic Counts	Time Period	Intersection Peak Hour ¹
Main Street (N/S) &		Weekday A.M.	7:30 to 8:30 A.M.
Broad Street (E/W)	Tuesday, March 29, 2022	Weekday P.M.	4:30 to 5:30 P.M.

^{1 =} Peak Hour consists of the four consecutive 15 minute intervals where the highest traffic volumes occur.

In order to determine the through traffic volumes along N. Main Street in the vicinity of the proposed driveway, TPD balanced the traffic volumes along N. Main Street utilizing the above count information. **Table 3** provides a summary of the 2022 existing condition (raw) traffic volumes.

TABLE 3
EXISTING COUNT INFORMATION

	2022 Raw Existing Traffic Volumes				
Time Period	NB volume	SB volume	Total		
Weekday A.M. Peak Hour	277	498	775		
Weekday P.M. Peak Hour	492	456	948		

Figure 3 shows the 2022 existing condition (raw) traffic volumes. Growth factors for August 2023 to July 2024 were obtained from the PennDOT Bureau of Planning and Research (BPR). The PennDOT BPR suggests using a background growth trend factor of 1.0042 (0.21% per year, compounded for two (2) years).

It should be noted that PennDOT BPR growth factors have recently been published for August 2024 to July 2025. The PennDOT BPR suggests using a background growth trend factor of 1.0034 (0.17% per year, compounded for two (2) years). As such, the growth factor for August 2023 to July 2024 was utilized to provide a more conservative analysis of background traffic growth. Therefore, TPD applied the 1.0042 growth trend factor to the 2022 raw traffic volumes to produce 2024 existing condition traffic volumes.

Page 2 ______ www.TPDinc.con

The 2024 existing condition traffic volumes for the weekday A.M. and weekday P.M. peak hours are shown in **Figure 4**. The turning movement traffic count is included in **Appendix B**.

BASE (NO-BUILD) CONDITIONS

Annual Background Growth

A background growth factor for the roadways in the study area was developed based on growth factors for August 2023 to July 2024 obtained from the PennDOT Bureau of Planning and Research (BPR). The PennDOT BPR suggests using a background growth trend factor of 0.21% per year in Montgomery County for urban non-interstate roadways.

It should be noted that PennDOT BPR growth factors have recently been published for August 2024 to July 2025. The PennDOT BPR suggests using a background growth trend factor of 1.0034 (0.17% per year, compounded for two (2) years). As such, the growth factor for August 2023 to July 2024 was utilized to provide a more conservative analysis of background traffic growth. The background growth factor was applied annually to yield overall growth percentages of 0.42% (0.21% per year, compounded over two (2) years) for the 2026 opening year.

Base (No-Build) Conditions Volume Development

The additional traffic volumes due to background growth were added to produce 2026 base (no-build) condition traffic volumes. The 2026 base condition traffic volumes for the weekday A.M. and weekday P.M. peak hours are illustrated in **Figure 5**.

PROPOSED SITE ACCESS

Access to the site will be served by one (1) full-access driveway to N. Main Street.

Sight Distance Analysis

A sight distance analysis was prepared for the proposed site driveway. In general, recommended safe sight distances depend upon the posted speed limit and roadway grades. The existing sight distances at the proposed driveways were measured in accordance with PennDOT Publication 282 <u>Highway Occupancy Permit Operations Manual</u> and compared to PennDOT's desirable sight distance standard, which is identified in 67 PA Code Chapter 441.8(h), "Access to and Occupancy of Highways by Driveways and Local Roads." In addition, measured sight distances at the proposed driveways were compared to PennDOT's safe stopping sight distance standard, which is calculated by the following equation:

$SSSD = 1.47VT + V^2/[30(f\pm g)]$

SSSD = safe stopping sight distance (acceptable sight distance)

V = Vehicle Speed

T = Perception Reaction Time of Driver (2.5 seconds)

f = Coefficient of Friction for Wet Pavements

g = Percent of Roadway Grade Divided by 100

Table 4 shows the measured, desirable, acceptable (SSSD), and required sight distances at the site driveway for vehicles entering and exiting the site.

TABLE 4 SIGHT DISTANCE ANALYSIS SITE DRIVEWAY TO N. MAIN STREET

				Sigh	t Distances	(feet)
	Direction	Speed	Grade ¹	DES	SSSD	EXIST
Exiting	To the left	25 mph	-1%	250	148	385
Movements	To the right	25 mph	+1%	195	145	750+
Entering Left	Approaching same direction	25 mph	+1%	**	145	+008
Turns	Approaching opposite direction	25 mph	-1%	190	148	700+

DES = PennDOT Desirable Sight Distance

SSSD = PennDOT Acceptable Sight Distance

EXIST = Existing (measured) Sight

1 = Roadway Grade Approaching Driveway

As shown in **Table 4** above, the measured sight distances at the site driveway exceed PennDOT's desirable sight distance requirements.

TRIP GENERATION

The trip generation rates for the proposed development were obtained from the *Trip Generation Manual*, Eleventh Edition, 2021, an Institute of Transportation Engineers (ITE) Informational Report. The data are categorized by Land Use Codes, with total vehicular trips for a given land use estimated using an independent variable and statistically generated rates or equations.

For the proposed residential development, Land Use Code 215 (Single-Family Attached Housing) from Trip Generation was used to calculate the number of vehicular trips the development will generate during the following time periods: (1) average weekday; (2) weekday A.M. peak hour; and (3) weekday P.M. peak hour. **Table 5** shows the rates/equations and directional percentages for the analyzed time periods.

TABLE 5
ITE TRIP GENERATION DATA – 8 TOWNHOMES

	11111			
ITE#	Time Period	Equations/Rates	Entering %	Exiting %
	Weekday	T = 7.20*(X)	50%	50%
215	Weekday A.M. Peak Hour	T = 0.48*(X)	25%	75%
		T = 0.57*(X)	59%	41%
		Weekday 215 Weekday A.M. Peak Hour	ITE # Time Period Equations/Rates Weekday T = 7.20*(X) 215 Weekday A.M. Peak Hour T = 0.48*(X)	ITE # Time Period Equations/Rates Entering % Weekday T = 7.20*(X) 50% 215 Weekday A.M. Peak Hour T = 0.48*(X) 25%

T = number of site-generated vehicular trips: X = Independent Variable (Dwelling Units)

The calculated trip generation for the proposed development for the opening year is shown in Table 6.

TABLE 6
TRIP GENERATION

	Residential Development – 8 Single Family Homes			
Time Period	Total	Enter	Exit	
Average Weekday	58	29	29	
Weekday A.M. Peak Hour	4	11	3	
Weekday P.M. Peak Hour	5	3	2	

Based on the trip generation analysis summarized in **Table 6**, the proposed development will generate approximately **4 new trips** during the weekday A.M. peak hour and **5 new trips** during the weekday P.M. peak hour.

TRIP DISTRIBUTION

The distribution of trips generated by the proposed development was based on the local road network, the existing traffic patterns, the proposed use of the site, and the site driveway location. The new trips for the proposed development were distributed to the local roadway network based on the percentages shown in **Table 7**.

TABLE 7
TRIP DISTRIBUTION PERCENTAGES

Direction - To/From	Assignment (To/From)	Distribution Percentage
North	via N. Main Street	29%
South	via S. Main Street (S.R. 0463)	29%
East	via E. Broad Street (S.R. 1003)	20%
West	via W. Broad Street (S.R. 0463)	22%

The assignment of site-generated trips for the proposed development during the weekday A.M. and weekday P.M. peak hours are shown in **Figure 6**.

PROJECTED (BUILD) CONDITION TRAFFIC VOLUMES

The site-generated trips for the proposed residential development were added to the 2026 base (no-build) condition traffic volumes to develop 2026 projected (build) condition traffic volumes.

Projected condition traffic volumes for the opening year of 2026 for the weekday A.M. and weekday P.M. peak hours are shown in **Figure 7**. Traffic volume development worksheets are contained in **Appendix C**.

LEVELS OF SERVICE FOR AN INTERSECTION

For analysis of intersections, level of service is defined in terms of delay, which is a measure of driver discomfort and frustration, fuel consumption, and lost travel time. LOS criteria is stated in terms of control delay per vehicle for a one-hour analysis period. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. The criteria are shown in **Table 8**. Delay, as it relates to level of service, is a complex measure and is dependent upon a number of variables. For signalized intersections, these variables include the quality of vehicle progression, the cycle length, the green time ratio, and the volume/capacity ratio for the lane group in question. For unsignalized intersections, delay is related to the availability of gaps in the flow of traffic on the major street and the driver's discretion in selecting an appropriate gap for a particular movement from the minor street (straight across, left or right turn).

riges

TABLE 4 SIGHT DISTANCE ANALYSIS SITE DRIVEWAY TO N. MAIN STREET

	SHE DRIVEWA			Sigh	t Distances	(feet)
	Direction	Speed	Grade ¹	DES	SSSD	EXIST
Exiting	To the left	25 mph	-1%	250	148	385
Movements	To the right	25 mph	+1%	195	145	750+
Entering Left	Approaching same direction	25 mph	+1%	7.7	145	+008
Turns	Approaching opposite direction	25 mph	-1%	190	148	700+

DES - PennDOT Desirable Sight Distance

SSSD = PennDOT Acceptable Sight Distance

EXIST = Existing (measured) Sight

1 = Roadway Grade Approaching Driveway

As shown in **Table 4** above, the measured sight distances at the site driveway exceed PennDOT's desirable sight distance requirements.

TRIP GENERATION

The trip generation rates for the proposed development were obtained from the *Trip Generation Manual*, Eleventh Edition, 2021, an Institute of Transportation Engineers (ITE) Informational Report. The data are categorized by Land Use Codes, with total vehicular trips for a given land use estimated using an independent variable and statistically generated rates or equations.

For the proposed residential development, Land Use Code 215 (Single-Family Attached Housing) from Trip Generation was used to calculate the number of vehicular trips the development will generate during the following time periods: (1) average weekday; (2) weekday A.M. peak hour; and (3) weekday P.M. peak hour. **Table 5** shows the rates/equations and directional percentages for the analyzed time periods.

TABLE 5
ITE TRIP GENERATION DATA – 8 TOWNHOMES

Land Use	ITE#	Time Period	Equations/Rates	Entering %	Exiting %
Lana OSC		Weekday	T = 7.20*(X)	50%	50%
Single-Family	215	Weekday A.M. Peak Hour	T = 0.48*(X)	25%	75%
Attached Housing	-13	Weekday P.M. Peak Hour	T = 0.57*(X)	59%	41%

T = number of site-generated vehicular trips:

X = Independent Variable (Dwelling Units)

The calculated trip generation for the proposed development for the opening year is shown in Table 6.

TABLE 6
TRIP GENERATION

	Residential Development – 8 Single Family Homes			
Time Period	Total	Enter	Exit	
Average Weekday	58	29	29	
Weekday A.M. Peak Hour	4	11	3	
Weekday P.M. Peak Hour	5	3	2	

Based on the trip generation analysis summarized in **Table 6**, the proposed development will generate approximately **4 new trips** during the weekday A.M. peak hour and **5 new trips** during the weekday P.M. peak hour.

TRIP DISTRIBUTION

The distribution of trips generated by the proposed development was based on the local road network, the existing traffic patterns, the proposed use of the site, and the site driveway location. The new trips for the proposed development were distributed to the local roadway network based on the percentages shown in **Table 7**.

TABLE 7
TRIP DISTRIBUTION PERCENTAGES

Direction - To/From	Assignment (To/From)	Distribution Percentage
North	via N. Main Street	29%
South	via S. Main Street (S.R. 0463)	29%
East	via E. Broad Street (S.R. 1003)	20%
West	via W. Broad Street (S.R. 0463)	22%

The assignment of site-generated trips for the proposed development during the weekday A.M. and weekday P.M. peak hours are shown in **Figure 6**.

PROJECTED (BUILD) CONDITION TRAFFIC VOLUMES

The site-generated trips for the proposed residential development were added to the 2026 base (no-build) condition traffic volumes to develop 2026 projected (build) condition traffic volumes.

Projected condition traffic volumes for the opening year of 2026 for the weekday A.M. and weekday P.M. peak hours are shown in **Figure 7**. Traffic volume development worksheets are contained in **Appendix C**.

LEVELS OF SERVICE FOR AN INTERSECTION

For analysis of intersections, level of service is defined in terms of delay, which is a measure of driver discomfort and frustration, fuel consumption, and lost travel time. LOS criteria is stated in terms of control delay per vehicle for a one-hour analysis period. Control delay includes initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. The criteria are shown in **Table 8**. Delay, as it relates to level of service, is a complex measure and is dependent upon a number of variables. For signalized intersections, these variables include the quality of vehicle progression, the cycle length, the green time ratio, and the volume/capacity ratio for the lane group in question. For unsignalized intersections, delay is related to the availability of gaps in the flow of traffic on the major street and the driver's discretion in selecting an appropriate gap for a particular movement from the minor street (straight across, left or right turn).

TABLE 8 LEVEL OF SERVICE CRITERIA UNSIGNALIZED AND SIGNALIZED INTERSECTIONS 1

	Control Delay Per Vehicle (Seconds)			
Level of Service	Signalized	Unsignalized		
Δ	< 10	< 10		
R	> 10 and < 20	> 10 and < 15		
C	> 20 and < 35	> 15 and < 25		
	> 35 and < 55	> 25 and < 35		
<u> Б</u>	> 55 and < 80	> 35 and < 50		
	> 80 or v/c > 1.0	> 50 or v/c > 1.0		

Obtained from Exhibits 19-8 and 20-2 of the Transportation Research Board's Highway Capacity Manual 6th Edition

CAPACITY ANALYSIS METHODOLOGY

Capacity analyses were conducted for the weekday A.M. and weekday P.M. peak hours at the study area intersections. These analyses were conducted according to the methodologies contained in the *Highway Capacity Manual 6th Edition* (HCM) using *Synchro 11* software, a Trafficware product.

The following conditions were analyzed, as applicable:

- » Existing conditions;
- » 2026 Base conditions (Build-out year without development);
- » 2026 Projected conditions (Build-out year with development).

The following items should be noted with respect to the capacity analyses:

- The Pennsylvania default values for two-way stop-controlled intersections in a suburban land use context contained in Chapter 10 of PennDOT's Publication 46 were utilized for the base critical headway and base follow-up headways. The critical and follow-up headway calculation worksheet is included in **Appendix D**.
- » Per PennDOT standards, a peak hour factor of 0.90 was utilized for the intersection of N. Main Street & Proposed Site Driveway.
- » Per PennDOT standards, a heavy vehicle percentage of 2% was utilized for all turning movements to/from the proposed site driveway.

The capacity analysis worksheets are included in **Appendix E**. The PennDOT-approved existing signal plan is included in **Appendix F**.

PennDOT Standards

The capacity analyses were conducted in accordance with the below noted standards contained in Appendix A - Policies and Procedures for Transportation Impact Studies Related to Highway Occupancy Permits of PennDOT *Publication 282*, dated February 2024:

Page 32 of the Guidelines state that if evaluation of the With Development Horizon Year Scenario to the Without Development Horizon Year Scenario indicates that the overall intersection level of service has dropped, the applicant will be required to mitigate the level of service if the increase in overall intersection delay is greater than 10-seconds. If the overall intersection delay increase is less than or equal to 10-seconds, mitigation of the intersection will not be required. If the intersection level of service meets the level of service requirements, applicants may still be required.

to provide mitigation to address critical lanes or approaches. For locations where the level of service of the design horizon year without the development is LOS F and with development, the delay increases more than 10 seconds, the remedies shall provide an estimated delay which will be no worse than the delay for the design year without the development.

- Page 33 of the Guidelines state that for mitigation scenarios, applicants are expected to mitigate the overall intersection LOS to the original Without Development LOS; the 10-second delay variance is not applied to mitigation scenarios. Applicants may be required to address available storage and queue lengths at critical movements or approaches even if the overall LOS requirements are met.
- Page 34 of the Guidelines state that if signalization is the preferred alternative for mitigation, overall intersection LOS C in rural areas and LOS D in urban areas is acceptable.
- Page 35 of the Guidelines states new signalized or unsignalized intersections established to serve as access to the development shall be designed to operate at minimum LOS C for rural areas, and minimum LOS D for urban areas.

LEVELS OF SERVICE IN THE STUDY AREA

Level of service (LOS) matrices for the study area intersections are shown in Table 9 for the weekday A.M. and weekday P.M. peak hours.

TABLE 9 LEVEL OF SERVICE (SECONDS) SUMMARY

	Movement	Weekd	ay A.M. Pe	ak Hour	Weekday P.M. Peak Hour		
Intersection	(Existing /	Existing	Opening	Year 2026	Existing	Opening	Year 2026
	Proposed)	Condition	Base	Projected	Condition	Base	Projected
	EB L	B (15.7)	B (15.7)	B (15.8)	B (13.8)	B (13.9)	B (13.9)
	EB TR	C (24.6)	C (24.8)	C (24.9)	C (23.3)	C (23.5)	C (23.5)
Main Street (N/S)	WB L	B (15.8)	B (15.9)	B (16.0)	B (14.3)	B (14.4)	B (14.4)
	WB TR	C (22.4)	C (22.5)	C (22.6)	B (19.6)	B (19.7)	B (19.8)
&	NB L	B (17.4)	B (17.4)	B (17.5)	B (17.8)	B (17.8)	B (17.8)
Broad Street (E/W)	NB TR	B (18.9)	B (18.8)	B (18.8)	C (33.2)	C (33.4)	C (33.4)
	SB L	B (14.2)	B (14.2)	B (14.2)	B (18.4)	B (18.4)	B (18.4)
	SB TR	D (35.3)	D (35.5)	D (35.9)	C (29.4)	C (29.5)	C (29.5)
	ILOS	C (25.8)	C (26.0)	C (26.1)	C (25.5)	C (25.7)	C (25.7)
N. Main Street & Proposed Site Driveway	/ WB LR	**		B (11.1)	(-		B (12.8)
	/ SB LT	<u> </u>		A (0.0)	28.8	**	A (9.7)
	ILOS	(88)	1,5	A (0.0)		22	A (0.0)

ILOS = Overall Intersection Level of Service: Unsignalized ILOS calculated in accordance with Figure 5 of Policies and Procedures for Transportation Impact Studies.

QUEUE ANALYSIS

Queue analyses were conducted at the study area intersections using Synchro 11 software. The queue analysis results are summarized in **Table 10** for the analyzed peak hours.

www.TPDinc.com

TABLE 8 LEVEL OF SERVICE CRITERIA UNSIGNALIZED AND SIGNALIZED INTERSECTIONS 1

	Control Delay Per Vehicle (Seconds)			
Level of Service	Signalized	Unsignalized		
A	< 10	< 10		
B	> 10 and < 20	> 10 and < 15		
C	> 20 and < 35	> 15 and < 25		
	> 35 and < 55	> 25 and < 35		
	> 55 and < 80	> 35 and < 50		
	> 80 or v/c > 1.0	> 50 or v/c > 1.0		

Obtained from Exhibits 19-8 and 20-2 of the Transportation Research Board's Highway Capacity Manual 6th Edition

CAPACITY ANALYSIS METHODOLOGY

Capacity analyses were conducted for the weekday A.M. and weekday P.M. peak hours at the study area intersections. These analyses were conducted according to the methodologies contained in the *Highway Capacity Manual 6th Edition* (HCM) using *Synchro 11* software, a Trafficware product.

The following conditions were analyzed, as applicable:

- » Existing conditions;
- » 2026 Base conditions (Build-out year without development);
- » 2026 Projected conditions (Build-out year with development).

The following items should be noted with respect to the capacity analyses:

- » The Pennsylvania default values for two-way stop-controlled intersections in a suburban land use context contained in Chapter 10 of PennDOT's Publication 46 were utilized for the base critical headway and base follow-up headways. The critical and follow-up headway calculation worksheet is included in **Appendix D**.
- » Per PennDOT standards, a peak hour factor of 0.90 was utilized for the intersection of N. Main Street & Proposed Site Driveway.
- » Per PennDOT standards, a heavy vehicle percentage of 2% was utilized for all turning movements to/from the proposed site driveway.

The capacity analysis worksheets are included in **Appendix E**. The PennDOT-approved existing signal plan is included in **Appendix F**.

PennDOT Standards

The capacity analyses were conducted in accordance with the below noted standards contained in Appendix A - Policies and Procedures for Transportation Impact Studies Related to Highway Occupancy Permits of PennDOT *Publication 282*, dated February 2024:

Page 32 of the Guidelines state that if evaluation of the With Development Horizon Year Scenario to the Without Development Horizon Year Scenario indicates that the overall intersection level of service has dropped, the applicant will be required to mitigate the level of service if the increase in overall intersection delay is greater than 10-seconds. If the overall intersection delay increase is less than or equal to 10-seconds, mitigation of the intersection will not be required. If the intersection level of service meets the level of service requirements, applicants may still be required

Page 6

to provide mitigation to address critical lanes or approaches. For locations where the level of service of the design horizon year without the development is LOS F and with development, the delay increases more than 10 seconds, the remedies shall provide an estimated delay which will be no worse than the delay for the design year without the development.

- Page 33 of the Guidelines state that for mitigation scenarios, applicants are expected to mitigate the overall intersection LOS to the original Without Development LOS; the 10-second delay variance is not applied to mitigation scenarios. Applicants may be required to address available storage and queue lengths at critical movements or approaches even if the overall LOS requirements are met.
- Page 34 of the Guidelines state that if signalization is the preferred alternative for mitigation, overall intersection LOS C in rural areas and LOS D in urban areas is acceptable.
- Page 35 of the Guidelines states new signalized or unsignalized intersections established to serve as access to the development shall be designed to operate at minimum LOS C for rural areas, and minimum LOS D for urban areas.

LEVELS OF SERVICE IN THE STUDY AREA

Level of service (LOS) matrices for the study area intersections are shown in Table 9 for the weekday A.M. and weekday P.M. peak hours.

TABLE 9 LEVEL OF SERVICE (SECONDS) SUMMARY

	Movement	Weekd	lay A.M. Pe	ak Hour	Weekday P.M. Peak Hour		
Intersection	(Existing /	Existing	Opening	Year 2026	Existing	Opening	Year 2026
	Proposed)	Condition	Base	Projected	Condition	Base	Projected
Main Street (N/S)	EB L	B (15.7)	B (15.7)	B (15.8)	B (13.8)	B (13.9)	B (13.9)
	EB TR	C (24.6)	C (24.8)	C (24.9)	C (23.3)	C (23.5)	C (23.5)
	WB L	B (15.8)	B (15.9)	B (16.0)	B (14.3)	B (14.4)	B (14.4)
	WB TR	C (22.4)	C (22.5)	C (22.6)	B (19.6)	B (19.7)	B (19.8)
&	NB L	B (17.4)	B (17.4)	B (17.5)	B (17.8)	B (17.8)	B (17.8)
Broad Street (E/W)	NB TR	B (18.9)	B (18.8)	B (18.8)	C (33.2)	C (33.4)	C (33.4)
	SB L	B (14.2)	B (14.2)	B (14.2)	B (18.4)	B (18.4)	B (18.4)
	SB TR	D (35.3)	D (35.5)	D (35.9)	C (29.4)	C (29.5)	C (29.5)
	ILOS	C (25.8)	C (26.0)	C (26.1)	C (25.5)	C (25.7)	C (25.7)
N. Main Street	/ WB LR	200		B (11.1)	122		B (12.8)
&	/ SB LT	(e-p)	112-	A (0.0)	199		A (9.7)
Proposed Site Driveway No-Build scenario	ILOS		7.73	A (0.0)	***		A (0.0)

QUEUE ANALYSIS

Queue analyses were conducted at the study area intersections using Synchro 11 software. The queue analysis results are summarized in Table 10 for the analyzed peak hours.

www.TPDinc.com

ILOS - Overall Intersection Level of Service: Unsignalized ILOS calculated in accordance with Figure 5 of Policies and Procedures for Transportation Impact Studies

TABLE 10 95TH PERCENTILE QUEUE ANALYSIS (FEET)

Intersection	Movement (Existing /		Weekday A.M. Peak Hour Opening Year 2026		Weekday P.M. Peak Hou Opening Year 2026	
	Proposed)	Proposed)	Base	Projected	Base	Projected
	EB L	280	<25	<25	25	25
	EB TR	.**	205	205	233	235
	WB L	100	28	28	33	33
Main Street (N/S)	WB TR	4	168	168	168	168
&	NB L	100	25	25	43	43
Broad Street (E/W)	NB TR	0-41	163	163	328	330
	SB L	-	<25	<25	35	35
	SB TR	265	403	408	288	288
N. Main Street &	/ WB LR	22	44	<25		<25
Proposed Site Driveway	/ SB LT	574		<25		<25

Base = No-Build scenario

Projected = Build scenario

Queue analysis worksheets are included with the capacity analysis worksheets provided in Appendix E.

GAP ANALYSIS

As requested by Hatfield Borough, TPD performed a Gap Study at the proposed site driveway location on N. Main Street. The number and duration of gaps available for these movements were documented. The duration of gaps in traffic directly relates to the capacity (number of vehicles) that can make the identified movements. In order for a vehicle to make the identified movements at these locations, a large enough gap in traffic must be present for those movements to occur. TPD determined the necessary Critical Gap and Follow-Up Gap needed for the evaluated movements based on HCM 6th Edition Methodology and the PA Default Value Adjustments. Based on this, the following peak hours and gaps were utilized:

Minor Left-Turn from Proposed Full-Access Driveway (Westbound) to Southbound N. Main Street:

- Weekday A.M.: 7:30-8:30 A.M. Critical Gap of 6.4 seconds and Follow-Up Gap of 3.0 seconds.
- Weekday P.M.: 4:30-5:30 P.M. Critical Gap of 6.4 seconds and Follow-Up Gap of 3.0 seconds.

The number and time duration of gaps counted during the weekday A.M. and weekday P.M. peak hours were compared to the standards outlined above, in order to determine the total number of vehicles that can be served during the peak hours.

TPD compared the total capacity calculated based on the field gap counts to the projected vehicle demand. **Table 11** shows this comparison.

Page 8 ______www.TPDinc.com

TABLE 11
GAP ANALYSIS

Intersection	Movement	Peak Hour	Available Capacity for Turns	Projected 2026 Turning Vehicle Demand
N. Main Street &	WBL	Weekday A.M.	375	2
Full-Access Driveway	***	Weekday P.M.	312	1

As shown in **Table 11**, the available capacity for <u>minor left-turn vehicles</u> (gaps) from the proposed Full-Access Driveway (westbound) to southbound N. Main Street <u>exceeds</u> the anticipated number of minor left-turn vehicles. Therefore, sufficient capacity is available for left turns onto southbound N. Main Street from the proposed Full-Access Driveway (westbound) under future conditions.

Gap analysis worksheets are contained in Appendix G.

AUXILIARY TURN LANE ANALYSIS

Methodology

TPD evaluated auxiliary turn lane warrants at the site access intersections. The warrant analysis methodology contained within Chapter 11 of PennDOT's *Publication 46*, Section 11.17 and Strike-Off Letter 470-08-07 was utilized for this evaluation.

Findings

Table 12 summarizes the results of the auxiliary turn lane analysis at the site access intersection.

TABLE 12
AUXILIARY TURN LANE ANALYSIS SUMMARY

Intersection	Auxiliary Lane	Warrant Satisfied?		Required Lane	Proposed Lane	
Witersection	Auxiliary Lane	A.M.	P.M.	Length	Length	
N. Main Street &	SB Left-Turn Lane	No	No			
Proposed Site Driveway	NB Right-Turn Lane	No	No			

As shown in **Table 12**, based on the criteria outlined above, under 2026 projected conditions, left-turn and right-turn lane warrants <u>are not satisfied</u> on N. Main Street at the proposed site driveway.

Auxiliary turn lane warrant analysis worksheets are included in Appendix H.

RECOMMENDATIONS AND CONCLUSIONS

The recommendations and conclusions of this Transportation Impact Assessment are identified in the Executive Summary.

TABLE 10
95TH PERCENTILE QUEUE ANALYSIS (FEET)

Intersection	Movement (Existing /	Storage (Existing/			Weekday P.M. Peak Hou Opening Year 2026	
	Proposed)	Proposed)	Base	Projected	Base	Projected
	EB L	280	<25	<25	25	25
	EB TR		205	205	233	235
	WB L	100	28	28	33	33
Main Street (N/S)	WB TR	22	168	168	168	168
&	NB L	100	25	25	43	43
Broad Street (E/W)	NB TR	440	163	163	328	330
	SB L	-	<25	<25	35	35
	SB TR	265	403	408	288	288
N. Main Street &	/ WB LR	49:	94	<25	100	<25
Proposed Site Driveway	/ SB LT			<25	(mil)	<25

Base = No-Build scenario

Projected = Build scenario

Queue analysis worksheets are included with the capacity analysis worksheets provided in **Appendix E**.

GAP ANALYSIS

As requested by Hatfield Borough, TPD performed a Gap Study at the proposed site driveway location on N. Main Street. The number and duration of gaps available for these movements were documented. The duration of gaps in traffic directly relates to the capacity (number of vehicles) that can make the identified movements. In order for a vehicle to make the identified movements at these locations, a large enough gap in traffic must be present for those movements to occur. TPD determined the necessary Critical Gap and Follow-Up Gap needed for the evaluated movements based on HCM 6th Edition Methodology and the PA Default Value Adjustments. Based on this, the following peak hours and gaps were utilized:

Minor Left-Turn from Proposed Full-Access Driveway (Westbound) to Southbound N. Main Street:

- Weekday A.M.: 7:30-8:30 A.M. Critical Gap of 6.4 seconds and Follow-Up Gap of 3.0 seconds.
- Weekday P.M.: 4:30-5:30 P.M. Critical Gap of 6.4 seconds and Follow-Up Gap of 3.0 seconds.

The number and time duration of gaps counted during the weekday A.M. and weekday P.M. peak hours were compared to the standards outlined above, in order to determine the total number of vehicles that can be served during the peak hours.

TPD compared the total capacity calculated based on the field gap counts to the projected vehicle demand. **Table 11** shows this comparison.

Page 8 ______ www.TPDinc.com

TABLE 11 GAP ANALYSIS

	Intersection	Movement	Peak Hour	Available Capacity for Turns	Projected 2026 Turning Vehicle Demand
H	N. Main Street &	WB L	Weekday A.M.	375	2
	Full-Access Driveway	WD L	Weekday P.M.	312	1

As shown in **Table 11**, the available capacity for <u>minor left-turn vehicles</u> (gaps) from the proposed Full-Access Driveway (westbound) to southbound N. Main Street <u>exceeds</u> the anticipated number of minor left-turn vehicles. Therefore, sufficient capacity is available for left turns onto southbound N. Main Street from the proposed Full-Access Driveway (westbound) under future conditions.

Gap analysis worksheets are contained in Appendix G.

AUXILIARY TURN LANE ANALYSIS

Methodology

TPD evaluated auxiliary turn lane warrants at the site access intersections. The warrant analysis methodology contained within Chapter 11 of PennDOT's *Publication 46*, Section 11.17 and Strike-Off Letter 470-08-07 was utilized for this evaluation.

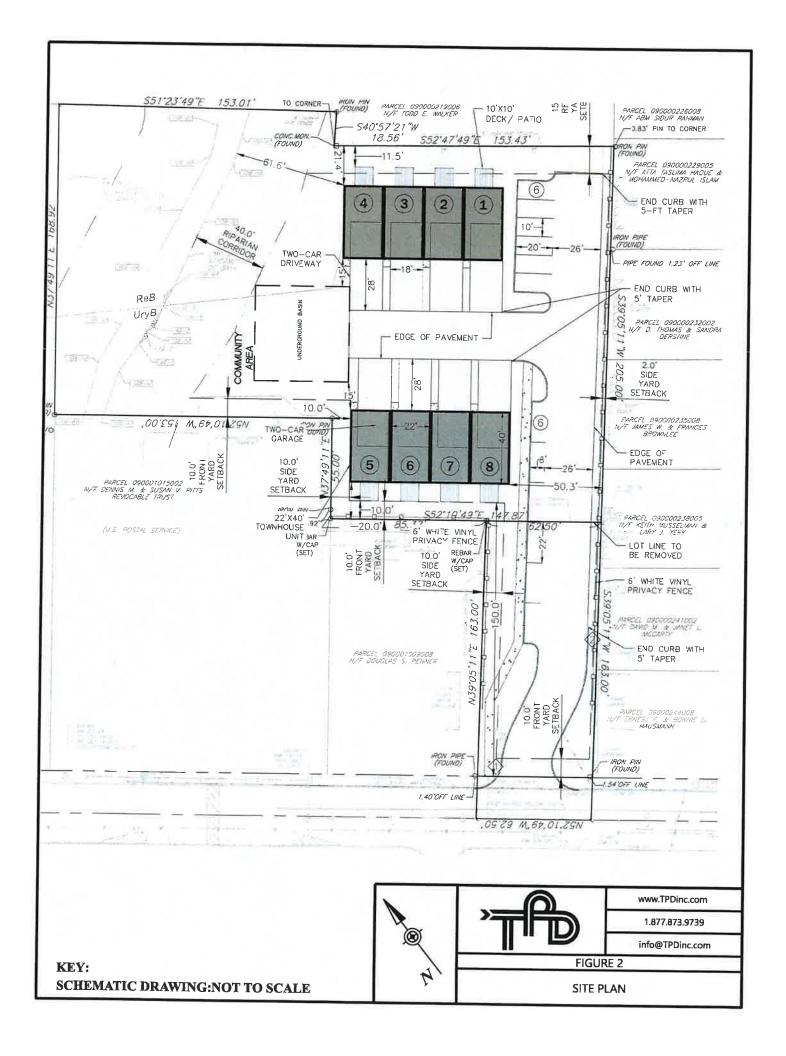
Findings

Table 12 summarizes the results of the auxiliary turn lane analysis at the site access intersection.

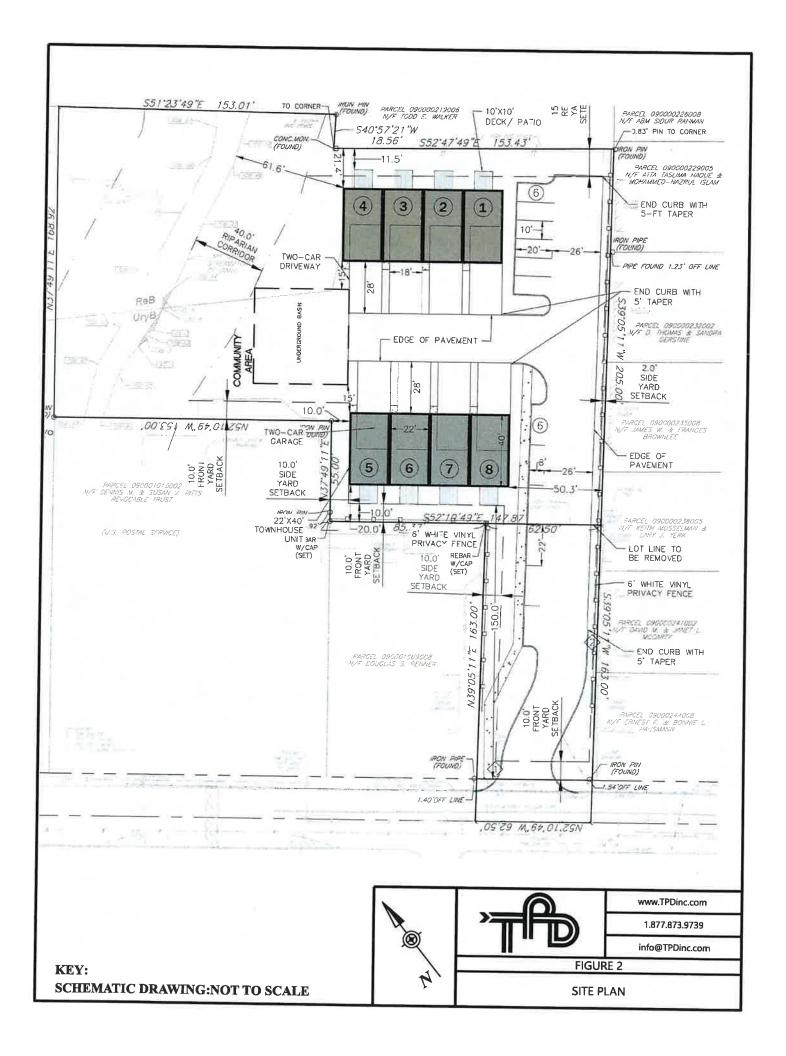
TABLE 12
AUXILIARY TURN LANE ANALYSIS SUMMARY

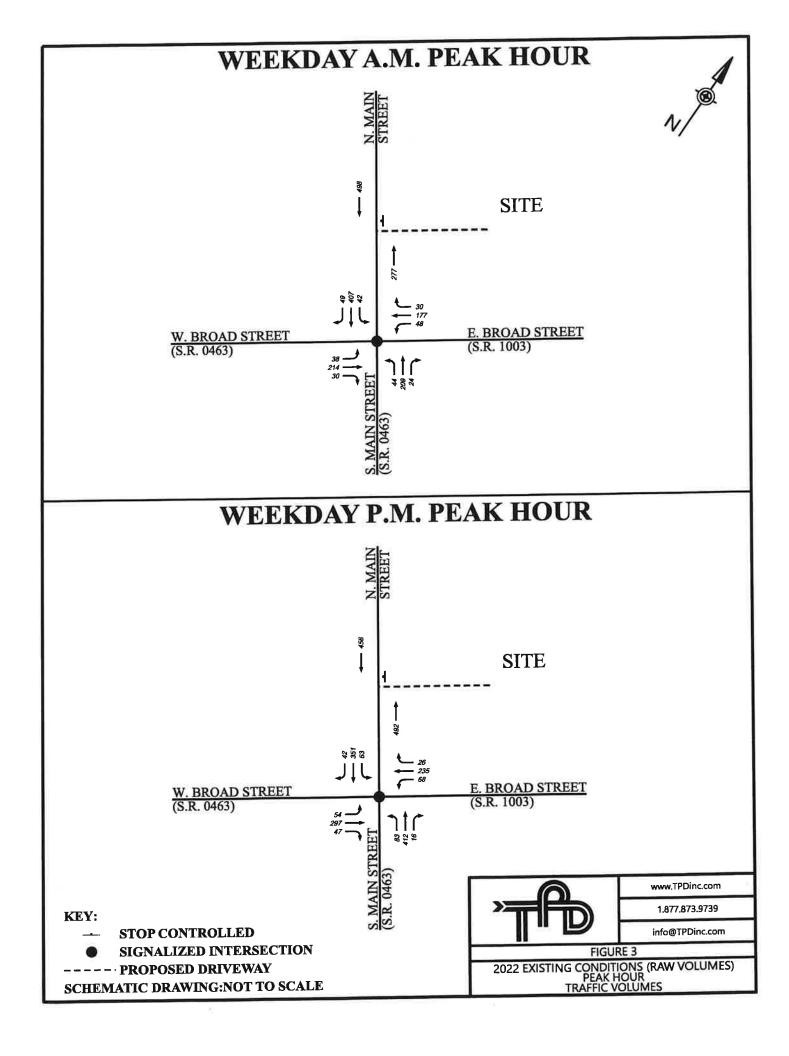
Intersection	Auxiliary Lane	Warrant Satisfied?		Required Lane	Proposed Lane	
mersection	Auxiliary Larie	A.M.	P.M.	Length	Length	
N. Main Street &	SB Left-Turn Lane	No	No		A.S. A.M.	
Proposed Site Driveway	NB Right-Turn Lane	No	No	22		

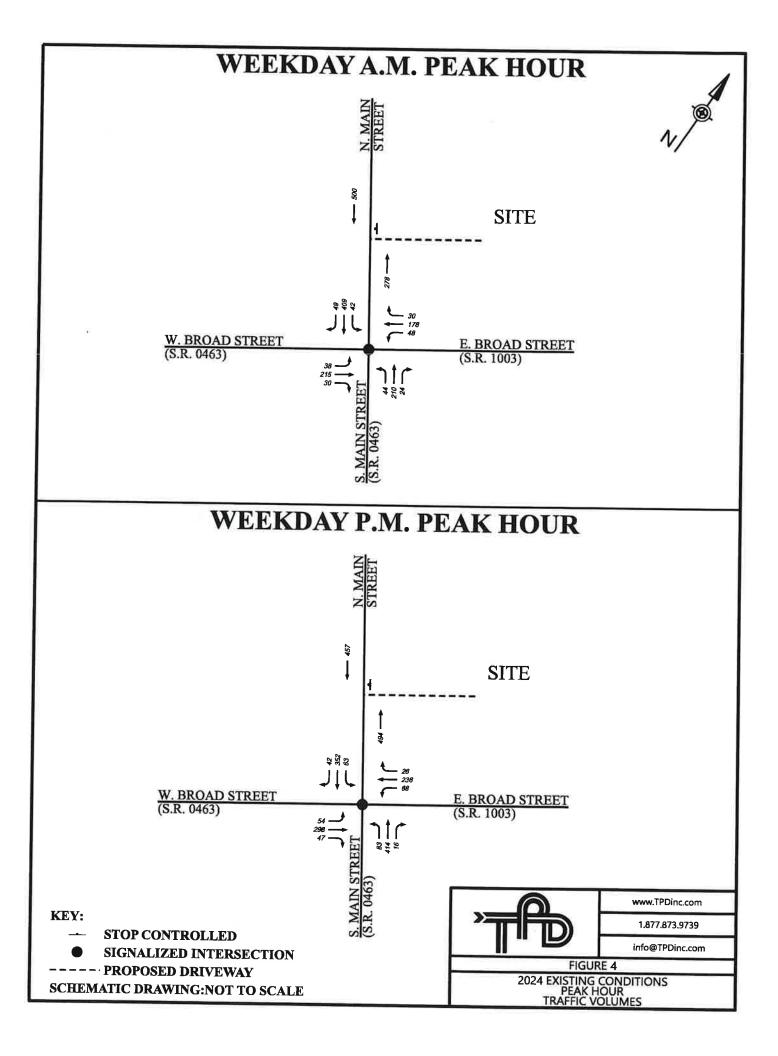
As shown in **Table 12**, based on the criteria outlined above, under 2026 projected conditions, left-turn and right-turn lane warrants are not satisfied on N. Main Street at the proposed site driveway.

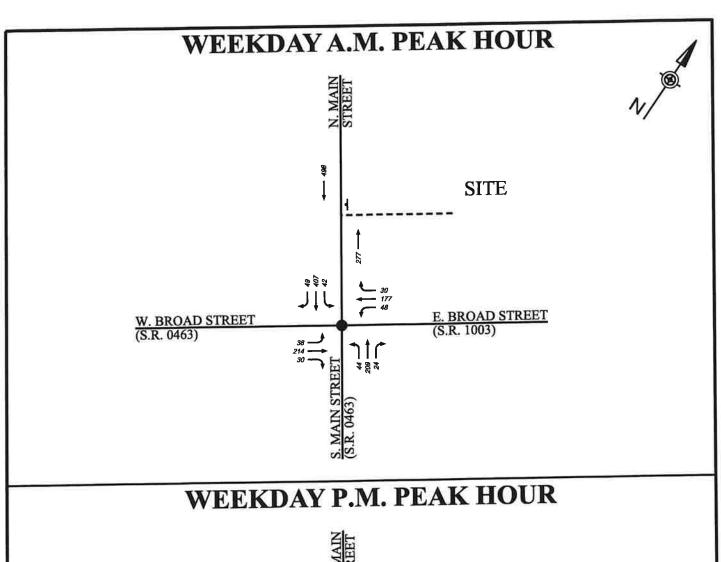

Auxiliary turn lane warrant analysis worksheets are included in Appendix H.

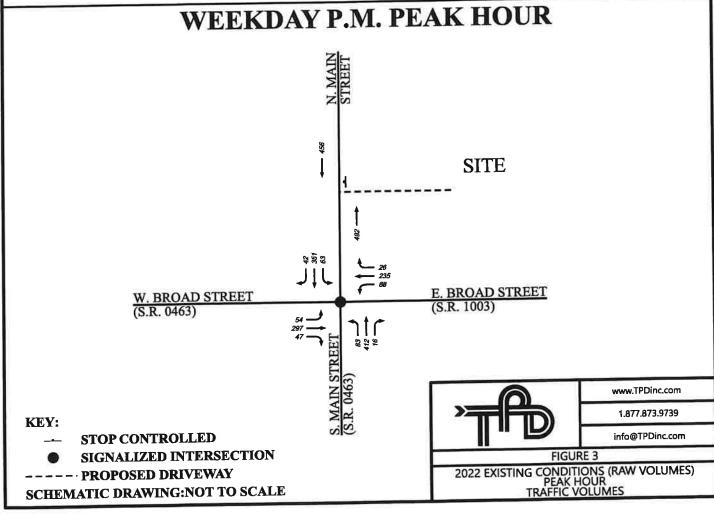
RECOMMENDATIONS AND CONCLUSIONS

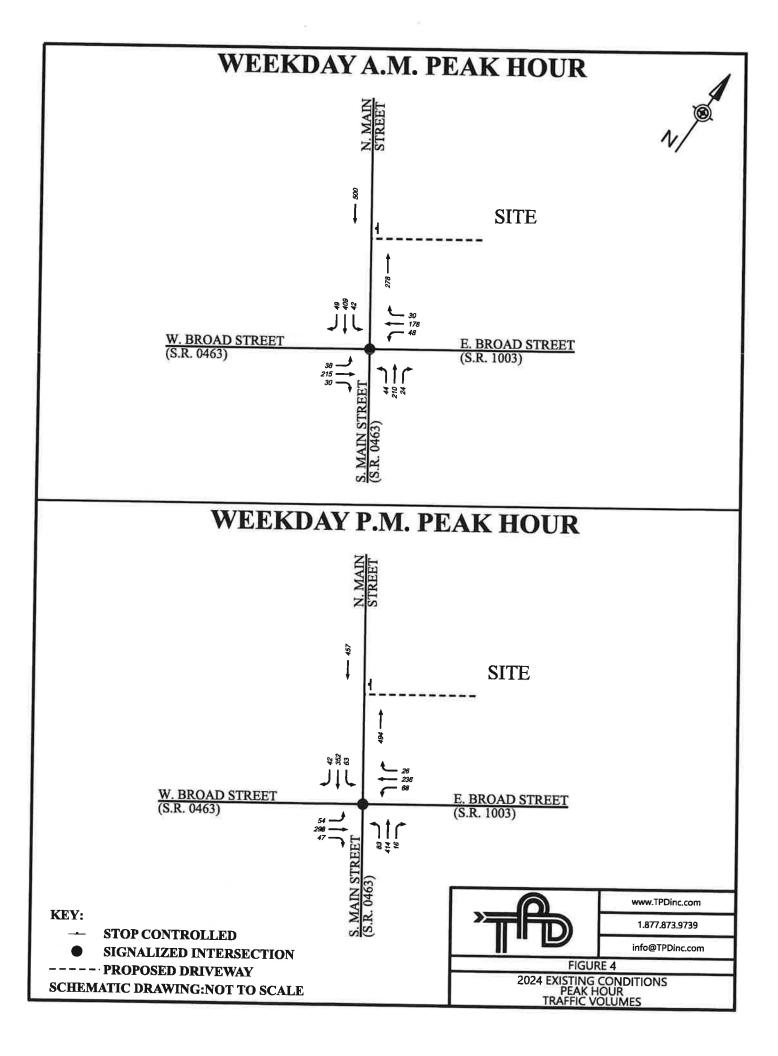

The recommendations and conclusions of this Transportation Impact Assessment are identified in the Executive Summary.

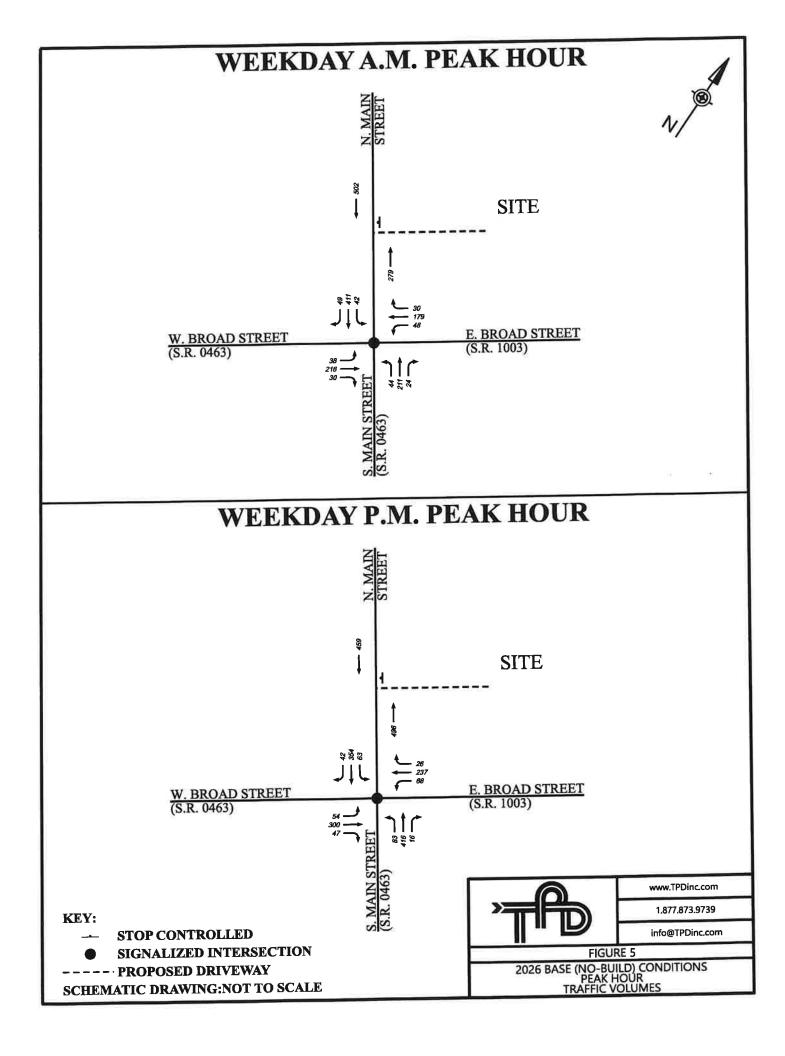

Page 9

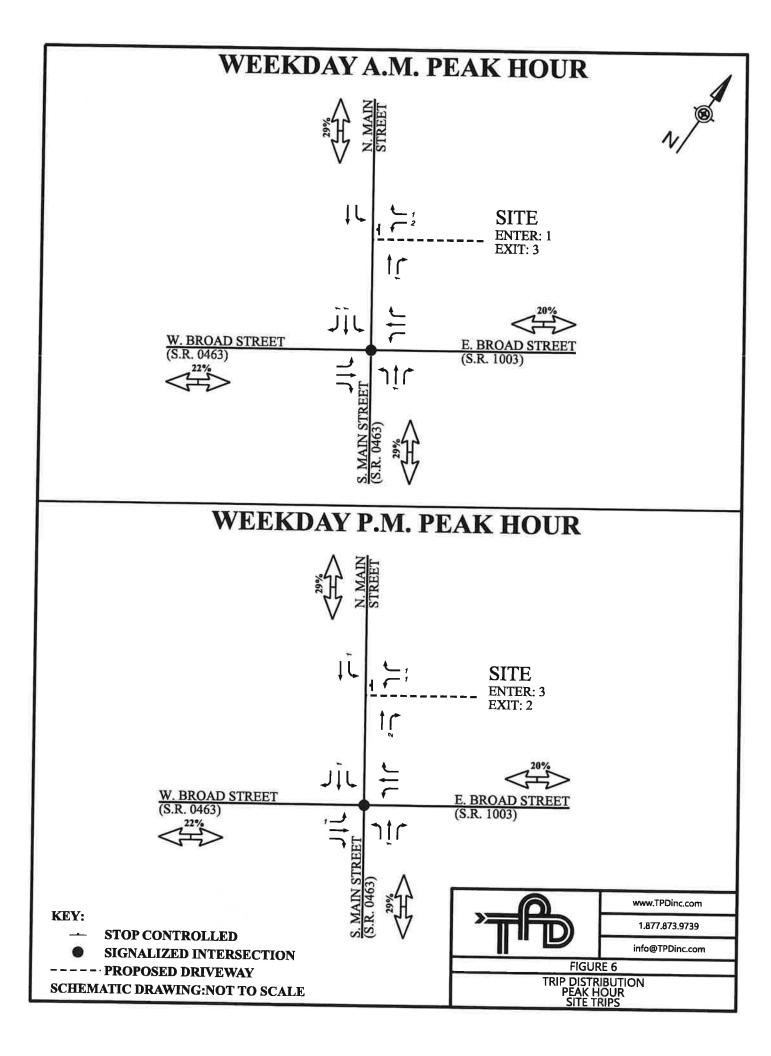


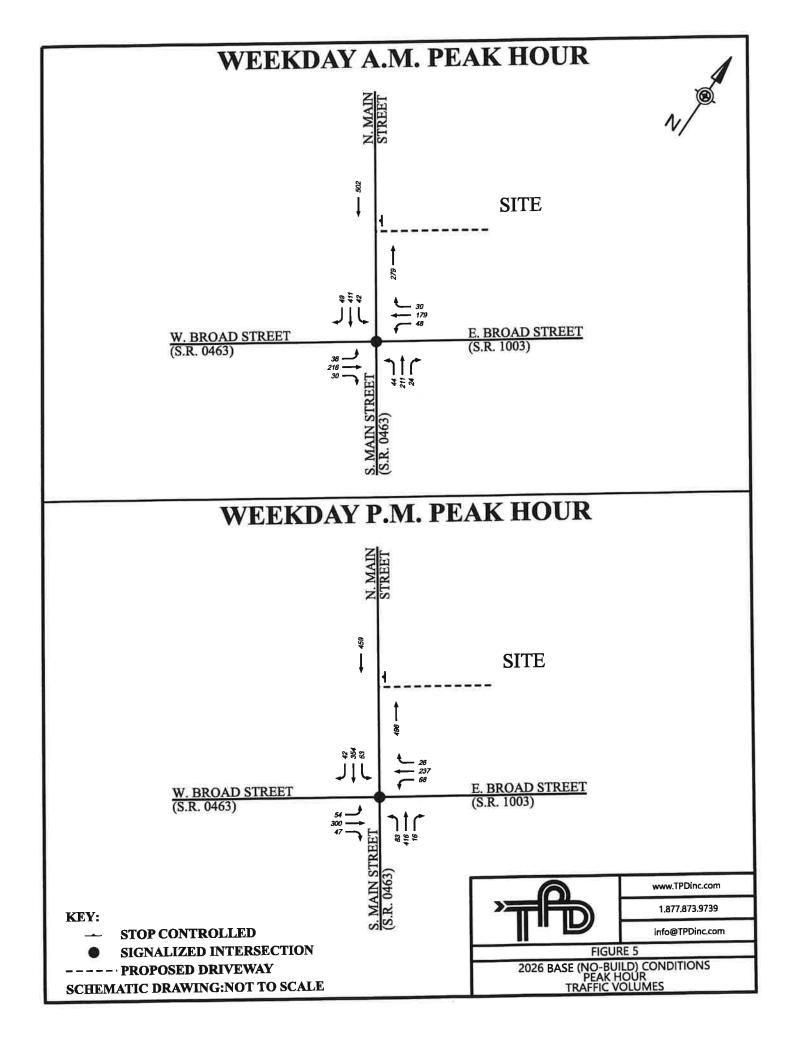


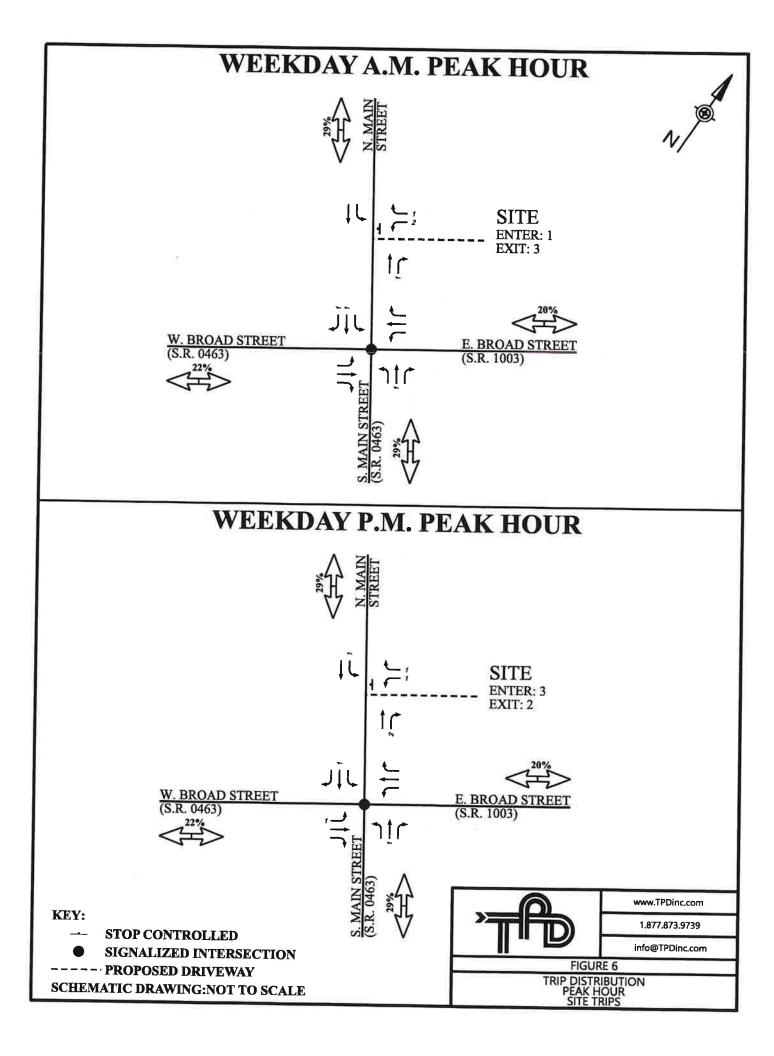


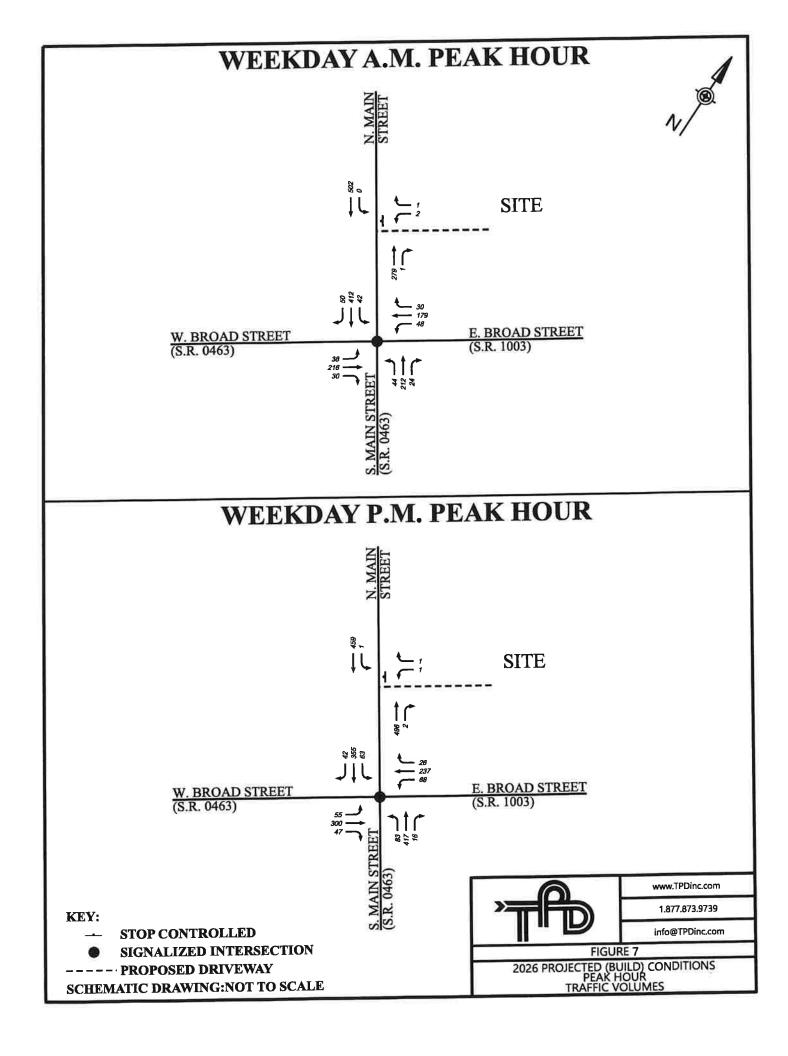


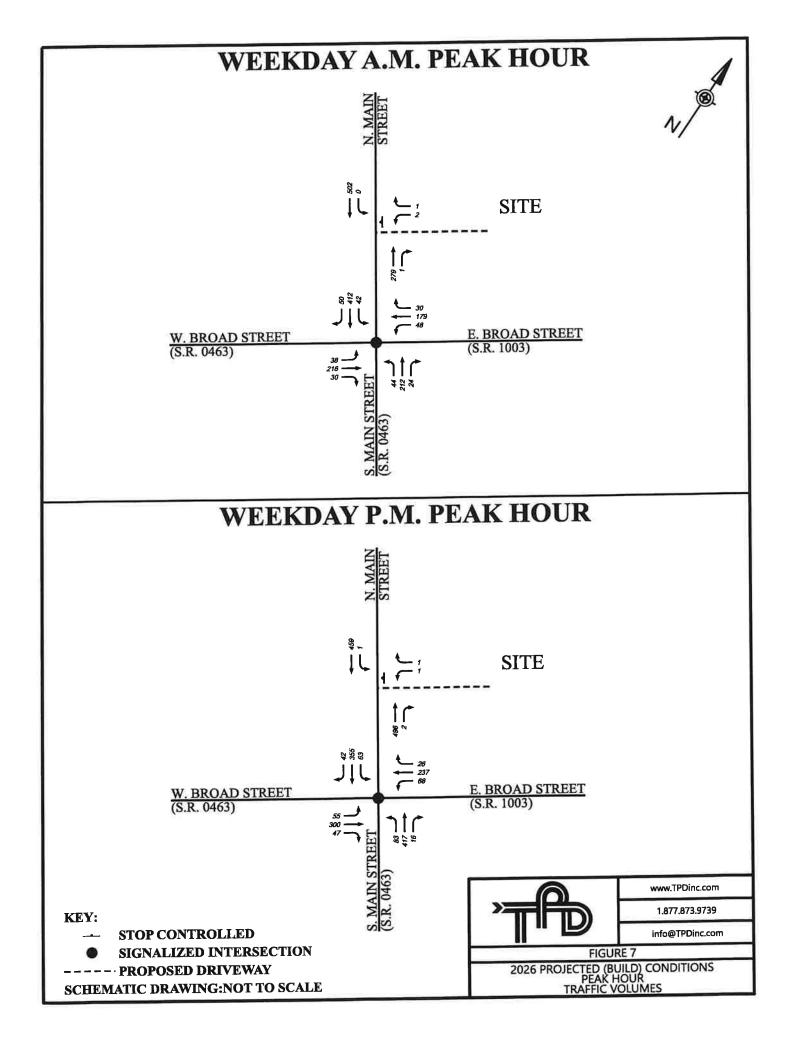












APPENDIX A: Project Correspondence

APPENDIX A: Project Correspondence

Bowman

September 20, 2024

Ms. Jaime E. Snyder Borough of Hatfield 401 South Main Street P.O. Box 190 Hatfield, PA 19440

RE: Traffic Engineering Review #3

Proposed Residential Development – Hatfield Walk 23 North Main Street Hatfield, PA 19440 Project No. 311304-01-001

Dear Jaime:

Per your request, Bowman Consulting Group (Bowman) has completed a traffic engineering review of the proposed residential development to be located at 23 North Main Street in the Borough of Hatfield, Montgomery County, PA. It is our understanding that the proposed development will consist of the development of eight (8) townhomes. Access to the proposed development will be provided via a full-movement driveway along North Main Street.

The following documents were reviewed and/or referenced in preparation of our comments:

- <u>Site Access Study Proposed Hatfield Homes Residential</u>, prepared by Traffic Planning and Design, Inc., dated August 21, 2024.
- <u>Preliminary/Final Land Development Plans Hatfield Walk</u>, prepared by Homes Cunningham, LLC, dated August 7, 2024.

Based on our review of the submitted documents noted above, Bowman offers the following comments for consideration by the Borough and action by the applicant.

General

 A response letter must be provided with the resubmission detailing how each comment below has been addressed, and where each can be found in the resubmission materials (i.e., page number(s)) to assist in the re-review process. Additional comments may follow upon review of any resubmitted and more detailed pans during the land development process.

Site Access Study

2. The site access study should be revised to include a traffic analysis of the intersection of intersection of Main Street and Broad Street. The intersection currently experiences delay during the commuter peak hours and the queuing along Main Street may impact the operation of the site driveway during the commuter peak hours. A gap study along North Main Street at the proposed site driveway location should be conducted if necessary to confirm that there are an adequate number of gaps in the North Main Street traffic stream for vehicles to safely enter and exit the site.

- 3. The site access study should be updated to include capacity/levels-of-service analysis for the intersection of North Main Street and the site driveway for the weekday morning and weekday afternoon peak hours under 2029 future with-development conditions.
- 4. The study should be revised so that the entering and exiting site trips for the weekday morning peak hour shown in Table 6 and on Figure 6 match the distribution percentages shown in Table 5. In addition, the turn lane warrant analysis shown in Appendix C should be revised accordingly.

Preliminary/Final Land Development Plans

- 1. The pavement markings along Main Street at the site access should be reviewed. Modifications to the pavement markings may be required to properly manage the movements to \from the site, the left turn lane at the signalized intersection, and the existing pedestrian crossing and parking at the post office. It should be noted that the Borough has identified traffic calming\pedestrian improvements along North Main Street at the existing pedestrian crossing for the post office.
- 2. Sight distance measurements must be shown on the plans for the intersection of North Main Street and the site driveway as required by **Section 22-405.1** of the **Subdivision and Land Development Ordinance.**
- 3. Turning templates should be provided with future plan submissions demonstrating the ability of a trash truck, emergency vehicle, and the largest expected delivery truck to maneuver into and out of the driveway along North Main Street and entirely through the site. The Borough Fire Marshal should review the emergency vehicle turning template for accessibility and circulation needs of emergency apparatus.
- 4. A "Stop" sign and stop bar should be shown on the plans on the site driveway approach to North Main Street. "No Parking" signs should be shown on the plans along the eastern side of the site driveway from North Main Street to the northern end of the site driveway.
- 5. ADA ramps must be provided at the driveway along Main Street for the existing sidewalk. An ADA ramp should also be shown on the plans on the northern end of the sidewalk located on the western side of the site driveway at its intersection with the drive aisle leading to/from the townhomes.
- 6. A back-up area should be provided on the western end of the drive aisle leading to/from the townhomes so that vehicles backing out of the driveways for lots 4 and 5 have adequate space to complete this maneuver.

Bowman

September 20, 2024

Ms. Jaime E. Snyder Borough of Hatfield 401 South Main Street P.O. Box 190 Hatfield, PA 19440

RE: Traffic Engineering Review #3

Proposed Residential Development – Hatfield Walk 23 North Main Street Hatfield, PA 19440 Project No. 311304-01-001

Dear Jaime:

Per your request, Bowman Consulting Group (Bowman) has completed a traffic engineering review of the proposed residential development to be located at 23 North Main Street in the Borough of Hatfield, Montgomery County, PA. It is our understanding that the proposed development will consist of the development of eight (8) townhomes. Access to the proposed development will be provided via a full-movement driveway along North Main Street.

The following documents were reviewed and/or referenced in preparation of our comments:

- <u>Site Access Study Proposed Hatfield Homes Residential</u>, prepared by Traffic Planning and Design, Inc., dated August 21, 2024.
- Preliminary/Final Land Development Plans Hatfield Walk, prepared by Homes Cunningham, LLC, dated August 7, 2024.

Based on our review of the submitted documents noted above, Bowman offers the following comments for consideration by the Borough and action by the applicant.

General

1. A response letter must be provided with the resubmission detailing how each comment below has been addressed, and where each can be found in the resubmission materials (i.e., page number(s)) to assist in the re-review process. Additional comments may follow upon review of any resubmitted and more detailed pans during the land development process.

Site Access Study

2. The site access study should be revised to include a traffic analysis of the intersection of intersection of Main Street and Broad Street. The intersection currently experiences delay during the commuter peak hours and the queuing along Main Street may impact the operation of the site driveway during the commuter peak hours. A gap study along North Main Street at the proposed site driveway location should be conducted if necessary to confirm that there are an adequate number of gaps in the North Main Street traffic stream for vehicles to safely enter and exit the site.

- 3. The site access study should be updated to include capacity/levels-of-service analysis for the intersection of North Main Street and the site driveway for the weekday morning and weekday afternoon peak hours under 2029 future with-development conditions.
- 4. The study should be revised so that the entering and exiting site trips for the weekday morning peak hour shown in Table 6 and on Figure 6 match the distribution percentages shown in Table 5. In addition, the turn lane warrant analysis shown in Appendix C should be revised accordingly.

Preliminary/Final Land Development Plans

- 1. The pavement markings along Main Street at the site access should be reviewed. Modifications to the pavement markings may be required to properly manage the movements to \from the site, the left turn lane at the signalized intersection, and the existing pedestrian crossing and parking at the post office. It should be noted that the Borough has identified traffic calming\pedestrian improvements along North Main Street at the existing pedestrian crossing for the post office.
- Sight distance measurements must be shown on the plans for the intersection of North Main Street and the site driveway as required by Section 22-405.1 of the Subdivision and Land Development Ordinance.
- 3. Turning templates should be provided with future plan submissions demonstrating the ability of a trash truck, emergency vehicle, and the largest expected delivery truck to maneuver into and out of the driveway along North Main Street and entirely through the site. The Borough Fire Marshal should review the emergency vehicle turning template for accessibility and circulation needs of emergency apparatus.
- 4. A "Stop" sign and stop bar should be shown on the plans on the site driveway approach to North Main Street. "No Parking" signs should be shown on the plans along the eastern side of the site driveway from North Main Street to the northern end of the site driveway.
- 5. ADA ramps must be provided at the driveway along Main Street for the existing sidewalk. An ADA ramp should also be shown on the plans on the northern end of the sidewalk located on the western side of the site driveway at its intersection with the drive aisle leading to/from the townhomes.
- 6. A back-up area should be provided on the western end of the drive aisle leading to/from the townhomes so that vehicles backing out of the driveways for lots 4 and 5 have adequate space to complete this maneuver.

2 of 3

We trust that this review letter responds to your request, and satisfactorily addresses the traffic issues related to the proposed development at this time. If the Borough has any questions, or requires further clarification, please contact me.

Sincerely,

Anton Kuhner, P.E. Senior Project Manager

AKK/BMJ

cc: Chad Camburn, P.E., Bursich Associates, Inc

Catherine M. Harper, Borough Solicitor

Bob Heil, Borough of Hatfield

Rob Cunningham, P.E., Holmes Cunningham, LLC (Applicant's Engineer)

Matt Hammond, P.E., Traffic Planning and Design, Inc. (Applicant's Traffic Engineer)

Q:\PA-FTWA-MC\MCM\eng\HATFIBO1\822C85 - 23 N Main St\Correspondence\Out\2024-08-30 Review Letter #3 - 23 North Main Street.docx

bowman.com

APPENDIX B: Traffic Count Printouts

We trust that this review letter responds to your request, and satisfactorily addresses the traffic issues related to the proposed development at this time. If the Borough has any questions, or requires further clarification, please contact me.

Sincerely,

Anton Kuhner, P.E. Senior Project Manager

liston Suhner

AKK/BMJ

cc: Chad Camburn, P.E., Bursich Associates, Inc

Catherine M. Harper, Borough Solicitor

Bob Heil, Borough of Hatfield

Rob Cunningham, P.E., Holmes Cunningham, LLC (Applicant's Engineer)

Matt Hammond, P.E., Traffic Planning and Design, Inc. (Applicant's Traffic Engineer)

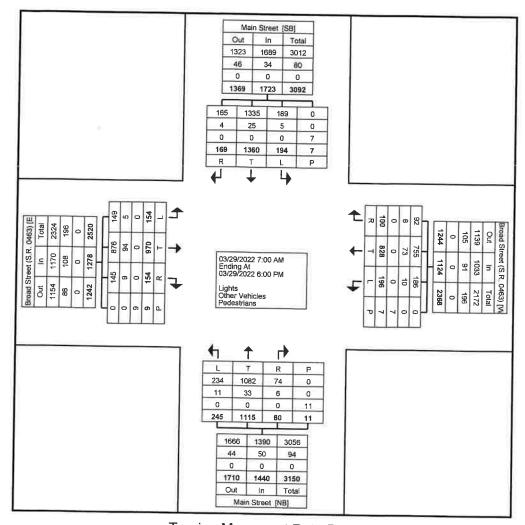
Q:\PA-FTWA-MC\MCM\eng\HATFIBO1\822C85 - 23 N Main St\Correspondence\Out\2024-08-30 Review Letter #3 - 23 North Main Street.docx

3 of 3

APPENDIX B:Traffic Count Printouts

Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610,326,3100

Count Name: Main Street & W. Broad Street (S.R. 0463) Site Code: Start Date: 03/29/2022 Page No: 1


Turning Movement Data

									Tui	nin	g M	ove	mer	nt D	ata			10							10
í í		Broa	d Street	(S.R.	0463)	1		Broa	d Street							Street					Main				
			East	ound					Westi	ound					North	bound					South	bound			
Start Time	Left	Thru	Right	Right on Red	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Tolal	Left	Thru	Right	Right on Red	Peds	App. Total	Int, Total
7:00 AM	2	55	7	0	C	64	6	45	2	0	0	53	16	35	4	0	-0	55	3	85	9	0	0	97	269
7:15 AM	2	54	2	0	C	58	4	46	4	0	ŋ	54	12	37	0	0	0	49	12	97	7	0	()	116	277
7:30 AM	2	50	2	0	λ	54	16	48	9	0	2	73	9	40	6	0	+3	55	6	96	14	0		116	298
7:45 AM	10	66	6	0	2	82	12	59	6	0	2	77	15	66	5	0	J	86	17	111	16	0	it.	144	389
Hourly Total	18	225	17	0	2	258	38	198	21	0	4	257	52	178	15	0	1	245	38	389	48	0	2	473	1233
8:00 AM	9	55	11	0	1	75	12	36	8	0	0	56	13	51	6	0	2	70	14	109	10	0	- 31	133	334
8:15 AM	17	43	11	0	- 1	71	8	34	7	0	0	49	7	52	5	2	0	66	5	91	9	0	0	105	291
8:30 AM	9	61	6	0	2	76	11	42	1	0	0	54	7	42	5	0	2	54	11	76	11	0	0	98	282
8:45 AM	7	43	5	0	2	55	5	37	18	0	0	60	13	49	4	0	2	66	10	88	14	0	O.	112	293
Hourty Total	42	202	33	0	5	277	38	149	34	0	0	219	40	194	20	2	6	256	40	364	44	0	-1	448	1200
*** BREAK ***		-	-	-			1.						(a)	4		- 6		- 14		140	*	1,63			-
4:00 PM	10	63	16	0	1	89	15	68	5	0	4	88	13	78	6	0	0	97	18	71	14	0	1.2	103	377
4:15 PM	12	70	12	0	- C	94	15	61	11	0	0	87	24	100	8	0	0	132	17	74	4	0	0	95	408
4:30 PM	14	77	14	0	0	105	15	61	7	0	0	83	21	91	1	0	·)	113	22	102	15	0	0	139	440
4:45 PM	11	57	8	0	a	76	15	65	7	0	9	87	26	98	2	0	Ý.	126	17	80	13	0	0	110	399
Hourly Total	47	267	50	0	•	364	60	255	30	0	1	345	84	367	17	0	1	468	74	327	46	0		447	1624
5:00 PM	15	90	9	0	3	114	22	59	7	0	- 4	88	12	103	8	0	0	123	13	93	3	0	- 11	109	434
5:15 PM	14	73	16	0	0	103	16	50	5	0	- 1	71	24	120	-5	0	2	149	11	76	11	0_	2	98	421
5:30 PM	12	64	12	0	9	88	12	66	1	0	ŋ	79	18	72	7	0	- 5	97	12	61	8	0	ú	81	345
5.45 PM	8	49	17	0	5	74	12	51	2	0	-0	65	15	81	6	0	S	102	6	50	10	1	ŋ	67	308
Hourty Total	49	276	54	0		379	62	226	15	0	2	303	69	378	26	0	3	471	42	280	32	1	- 3	355	1508
Grand Total	154	970	154	0	9	1278	196	828	100	0	7	1124	245	1115	78	2	11	1440	194	1360	168	_1_	7	1723	5565
Approach %	12.1	75.9	12.1	0.0			17.4	73.7	8.9	0.0	200		17.0	77.4	5.4	0.1	- 2	(a)	11.3	78.9	9.8	0.1	-	*	1.5
Total %	2.8	17.4	2.8	0.0		23.0	3.5	14.9	1.8	0.0		20.2	4.4	20.0	1.4	0.0		25.9	3,5	24.4	3.0	0.0	Le	31.0	
Lights	149	876	145	0		1170	186	755	92	0		1033	234	1082	72	2		1390	189	1335	164	1=		1689	5282
% Lights	96.8	90.3	94.2		- 2	91.5	94.9	91.2	92.0	-	2.5	91,9	95.5	97.0	92,3	100.0		96.5	97.4	98.2	97.6	100.0		98.0	94,9
Other	5	94	9	0		108	10	73	8	0	10.1	91	11	33	6	0	. 8	50	5	25	4	0	90	34	283
% Other Vehicles	3.2	9.7	5.8	(40		8,5	5.1	8.8	8.0			8.1	4.5	3.0	7.7	0.0		3.5	2.6	1.8	2.4	0.0		2.0	5.1
Pedestrians	1/2	-	-		3	-		-	201	-	- 4				-	(48)	- 53	•	7	· Se		*	150	- 5	555
% Pedestrians	12	•	\$3	545	169.9	- 45	-	**	290		100 0	8	ži.	je.	8	•	*60 o	1/26	*	:00	52	×	100.0		250

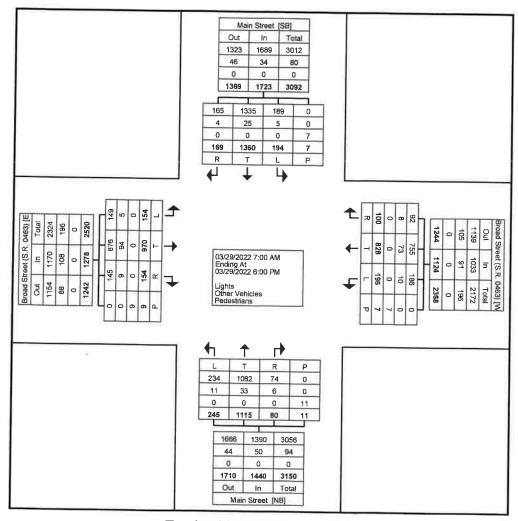
Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610.326,3100

Count Name: Main Street & W. Broad Street (S.R. 0463) Site Code: Start Date: 03/29/2022 Page No: 2

Turning Movement Data Plot

Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610.326.3100

Count Name: Main Street & W. Broad Street (S.R. 0463) Site Code: Start Date: 03/29/2022 Page No: 1


Turning Movement Data

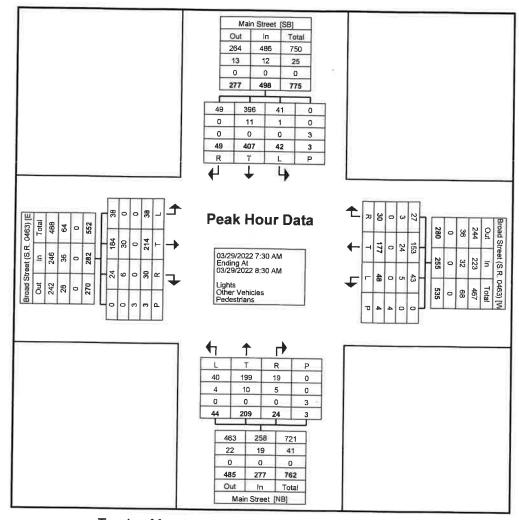
						- 0	i i				g IVI	ove	mei	וו		041		i			Main :	Street			
		Broa	d Stree	(S.R.	1463)			Broa	d Street		0463)				Main						South				
			Easth	ound					Wesli	oound					North						004111	Right			
Start Time	Left	Thru	Right	Right on Red	Peds	App. Tolal	Left	Thru	Right	Right on Red	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Total	Left	Thru	Right	on Red	Peds	App. Total	Int. Total
7:00 AM	2	55	7	0	0	64	6	45	2	0	0	53	16	35	4	0	0	55	3	85	9	0	0_	97	269
7:15 AM	2	54	2	0	100	58	4	46	4	0	0	54	12	37	0	0	0	49	12	97	7	0	0	116	277
7:30 AM	2	50	2	0	- 2	54	16	48	9	0	2	73	9	40	6	0	1	55	6	96	14	0	!	116	298
7:45 AM	10	66	6	0	0	82	12	59	6	0	2	77	15	66	5	0	0	86	17	111	16	0		144	389
Hourty Total	18	225	17	0	2	258	38	198	21	0	4	257	52	178	15	0	1	245	38	389	46	0	11.7	473	1233
8:00 AM	9	55	11	0	1	75	12	36	8	0	0	56	13	51	6	0	2	70	14	109	10	0	*	133	334
8:15 AM	17	43	11	0	0	71	8	34	7	0	0	49	7	52	5	2	g	66	5	91	9	0	0	105	291
8:30 AM	9	61	6	0	2:	76	11	42	1	0	0	54	7	42	5	0	2	54	11	76	11	0	0	98	282
8:45 AM	7	43	5	0	2	55	5	37	18	0	0	60	13	49	4	0	2	66	10	88	14	0	0.	112	293
Hourty Total	42	202	33	0	5	277	36	149	34	0	0	219	40	194	20	2	ô	256	40	364	44	0	1	448	1200
*** BREAK ***	-	25		-				14	80			350	25			-		- 5	22	•				*	*
4:00 PM	10	63	16	0	- 1	89	15	68	5	0		88	13	78	6	0	0	97	18	71	14	0	6	103	377
4:15 PM	12	70	12	0	0	94	15	61	11	0	0	87	24	100	8	0	0	132	17	74	4	0	0	95	408
4:30 PM	14	77	14	0	0	105	15	61	7	0	0	83	21	91	1	0	0	113	22	102	15	0	0	139	440
4:45 PM	11	57	8	0	- 0	76	15	65	7	0	0	87	26	98	2	0	_ !	126	17	80	13	0	C	110	399
Hourty Total	47	267	50	0	1	364	60	255	30	0	- 1	345	84	367	17	0	1	468	74	327	46	0	1	447	1624
5:00 PM	15	90	9	0	0	114	22	59	7	0	1	88	12	103	8	0	_ 0	123	13	93	3	0		109	434
5:15 PM	14	73	16	0	0	103	16	50	5	0	- 0	71	24	120	5	0	2	149	11	76	11	0		98	421
5:30 PM	12	64	12	0	- 1	88	12	66	1	0	Э	79	18	72	7	0	547	97	12	61	8	0	ū	81	345
5:45 PM	8	49	17	0	G.	74	12	51	2	0	G.	65	15	81	6	0_	<u>0</u>	102	6	50	10	1	5	67	308
Hourty Total	49	276	54	0	7	379	62	226	15	0	- 2	303	69	376	26	0	3	471	42	280	32		0	355	1508
Grand Total	154	970	154	0	9	1278	196	828	100	0	?	1124	245	1115	78	2	_11_	1440	194	1360	168	11	7	1723	5565
Approach %	12.1	75.9	12.1	0.0	17	12	17.4	73.7	8_9	0.0	-		17.0	77.4	5.4	0.1	-		11.3	78.9	9.8	0,1	-	24.0	:
Total %	2.8	17.4	2.8	0,0		23.0	3.5	14,9	1.8	0,0		20,2	4.4	20_0	1.4	0.0		25,9	3.5	24,4	3,0	0,0	_	31.0	-
Lights	149	876	145	0		1170	186	755	92	0		1033	234	1082	72	2		1390	189	1335	164	1	_	1689	5282
% Lights	96.8	90.3	94.2			91.5	94.9	91.2	92.0	261	-	91.9	95.5	97.0	92.3	100.0	h :	96.5	97.4	98,2	97.6	100,0		98.0	94.9
Other Vehicles	5	94	9	0		108	10	73	8	0	×	91	11	33	6	0		50	5	25	4	0	-2	34	283
% Other Vehicles	3.2	9.7	5.8	2		8.5	5_1	8,8	0.8			8.1	4,5	3.0	7.7	0.0	-10	3,5	2.6	1.B	2.4	0_0	- 7	2.0	5.1
Pedestrians	-	-	-	3	9	2		540	- 4		7	100					- 1		-		-				
% Pedestrians		ø	30	9	∃30 0	320	•	3		5(40)	100 0	*			383		1000		1/2	.*	- 8	100	100 3	163	•

Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610.326.3100

Count Name: Main Street & W. Broad Street (S.R. 0463) Site Code: Start Date: 03/29/2022 Page No: 2

Turning Movement Data Plot

Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610.326.3100 Count Name: Main Street & W, Broad Street (S.R. 0463) Site Code: Start Date: 03/29/2022 Page No: 3


Turning Movement Peak Hour Data (7:30 AM)

	ri .							_					W.		Main	Street			l .		Main	Street			ı
		Broa	d Stree	t (S.R. 0	0463)			Broa	d Stree		0463)											bound			1
			East	oound					Westi	bound					North	bound					South				1
Start Time	Left	Thru	Righl	Right on Red	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Total	Int. Total
7:30 AM	2	50		0	2	54	16	48	9	0	2	73	9	40	6	0	1	55	6	96	14	0	_ 1	116	298
	10	66	6	0	0	82	12	59	6	0	2	77	15	66	5	0	C	86	17	111	16	0	1	144	389
7:45 AM	_		_	0		75	12	36	8	0	0	56	13	51	6	0	2	70	14	109	10	0	1	133	334
8:00 AM	9	55		_		71	8	34	7	0	0	49	7	52	5	2	0	66	5	91	9	0	0	105	291
8:15 AM	17	43	11	0	0		_	177	30	0	4	255	44	200	22	2	3	277	42	407	49	0	3	498	1312
Total	38	214	30	0	3	282	48	_		_	_	200	15.9	75.5	7.9	0.7	- 0	-	8.4	81.7	9.8	0.0	2.		-
Approach %	_	75.9	10,6	0,0	-17	-	18.8	69.4	11.8	0.0	_	10.4	3.4	15.9	1.7	0.2		21.1	3.2	31.0	3.7	0.0	p.=	38.0	
Total %	2.9	16_3	2,3	0.0		21,5	3.7	13,5	2,3	0.0	_	19.4	_		_	_			_		0,766	0.000	7	0.865	0,843
PHF	0.559	0.811	0,682	0.000		0.860	0.750	_	0,833	_	_	0.828					_			396	49	0.000		486	1213
Lights	38	184	24	0	-	246	43	153	27	0		223	40	199	17	2		258	41					97.6	90012
% Lights	100.0	86.0	80.0	*		87.2	89,6	86,4	90.0			87.5	90.9	95.2	77,3	100.0		93.1	97.6	97.3	100,0	-	- 1	97,0	92.5
Other	a	30	6	0		36	5	24	3	0		32	4	10	5	0	W	19	1	11	0	0	36	12	99
% Other Vehicles	0.0	14.0	20,0	98		12.8	10.4	13.6	10.0	3		12.5	9.1	4.8	22.7	0.0		6,9	2,4	2.7	0,0	÷		2,4	7,5
Pedestrians	8			080	5	- 5		-			_ 4	7			. 3		- 1	•		*				_	-
% Pedestrians			*		100.0		a*a	*	150	3	140 1	3	9	160	32	£)	100.6	¥5	1+	×	290	*	146 7	*	120

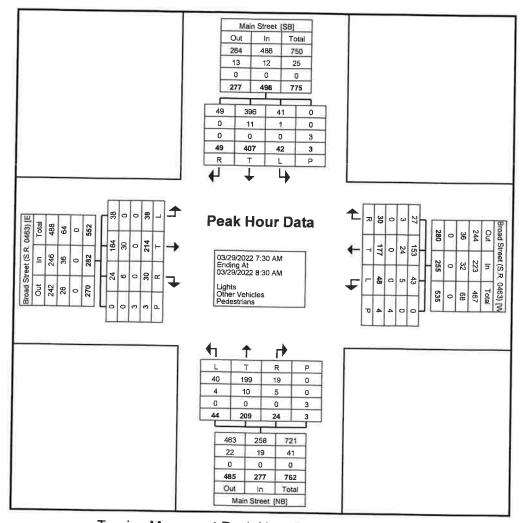
Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610,326,3100

Count Name: Main Street & W. Broad Street (S.R. 0463) Site Code: Start Date: 03/29/2022 Page No: 4

Turning Movement Peak Hour Data Plot (7:30 AM)

Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610.326.3100

Count Name: Main Street & W. Broad Street (S.R. 0463) Site Code: Start Date: 03/29/2022 Page No: 3


Turning Movement Peak Hour Data (7:30 AM)

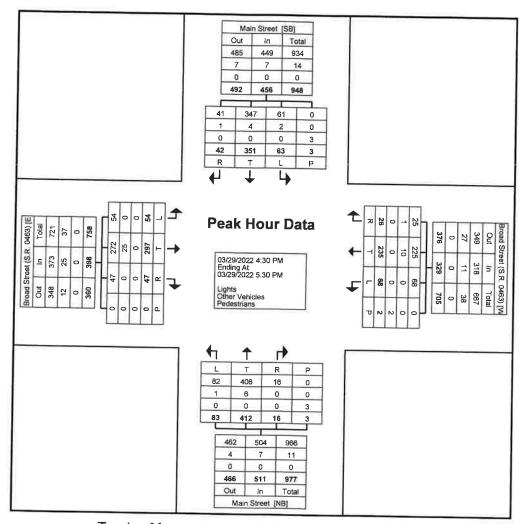
						I U	i r iii i	y ivi	OVC	11101	10.15	-				(. /	i i					- 0	1
	ľ	Broa	d Stree	t (S.R. 1	0463)	1	ĺ	Broa	d Stree	t (S.R. (0463)				Main	Street					Main				
				oound					Westl	bound					North	bound					South				
Start Time	Left	Thru	Right	Right	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Total	
7:30 AM	2	50	2	0	2	54	16	48	9	0	2	73	9	40	6	0	1	55	6	96	14	0	100	116	298
	40		6	0	0	82	12	59	6	0	2	77	15	66	5	0	IQ.	86	17	111	16	00	- 10	144	389
7:45 AM	10	66	_	0	- 1	75	12	36	8	0	0	56	13	51	6	0	2	70	14	109	10	0	1	133	334
8:00 AM	9	55	11	_		71	8	34	7	0	0	49	7	52	5	2	3	66	5	91	9	0	0	105	291
8:15 AM	17	43	11	0				177	30	0	.1	255	44	200	22	2	3	277	42	407	49	0	3	498	1312
Total	38	214	30	0	- 3	282	48		_	0.0		200	15.9	75.5	7.9	0.7			8.4	81.7	9.8	0.0	*(*	100
Approach %	13.5	75.9	10.6	0.0		•	18.8	69.4	11.8	_	_	_	3.4	15.9	1.7	0.2		21.1	3.2	31.0	3.7	0.0		38.0	
Total %	2.9	16.3	2,3	0.0	_	21.5	3.7	13.5	2.3	0.0	_	19.4	_	_	. 41-11-1						0.766	0.000		0.865	0.843
PHF	0.559	0.811	0.682	0.000		0.860	0.750		0.833		_		0.733					258	41	396	49	0	10	486	1213
Lights	38	_184	24	0	j.	246	43	153	27	0		223	40	199	17	2	_		97.6	97.3	100.0	12	7	97.6	1
% Lights	100.0	86.0	80.0		- 1	87.2	89.6	86.4	90,0			87.5	90.9	95.2	77.3	100.0		93.1	97.6	97,3	100.0	_	_		
Other	0	30	6	0		36	5	24	3	0	÷	32	4	10	5	0	. 0	19	1	11	0	0		12	99
% Other Vehicles	0.0	14.0	20.0	9		12.8	10.4	13.6	10.0	999		12.5	9.1	4,8	22.7	0.0		6.9	2,4	2.7	0.0	# 	_	2.4	7.5
Pedestrians			-		- 3						- 35	160	- 33	*	*		- 3			-	_	-	_3		÷
% Pedestrians		*	320	,	ano o	8	-		*	%	100 n	-	*	- 90	:•;	*	160	÷	95)	*	ē	72	100.0	74	*

Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610.326,3100

Count Name: Main Street & W. Broad Street (S.R. 0463) Site Code: Start Date: 03/29/2022 Page No: 4

Turning Movement Peak Hour Data Plot (7:30 AM)

Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610.326.3100 Count Name: Main Street & W. Broad Street (S.R., 0463) Site Code: Start Date: 03/29/2022 Page No: 5


Turning Movement Peak Hour Data (4:30 PM)

						T U	CHILL)	יייו פ	010	11101			il i Ti								4.4-1-	041		- 17	1
	f	Broa	d Street	(S.R.	0463)			Вгоа	d Stree	l (S.R.	0463)				Main	Street					Main			,	
				oound					West	bound			l.		North	bound					South				
Start Time	Left	Thru		Right on Red	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Total	Int. Total
100 014	44	77	14	0	0	105	15	61	7	0	0	83	21	91	1	0	0	113	22	102	15_	0	0	139	440
4:30 PM	14	_		_	0	76	15	65	7	0	n	87	26	98	2	0	1	126	17	80	13	0	ŋ	110	399
4:45 PM	11	57	8	0	_		_	_	'	0	-	88	12	103	8	0	0	123	13	93	3	0	1	109	434
5:00 PM	15	90	9	0	- J	114	22	59		_	÷	71	24	120	- 5	0	7	149	11	76	11	0	- 2	98	421
5:15 PM	14	73	16	0	0	103	16	50	5	0	_		1	412	16	0	3	511	63	351	42	0	2	456	1694
Total	54	297	47	0	_ 0	398	68	235	28	0	2	329	83			- 0	- 10	011	13.8	77.0	9.2	0.0	N.	-	1 8
Approach %	13.6	74.6	11.8	0.0		•	20.7	71.4	7.9	0.0	4		16.2	80.6	3.1	0.0	-	20.0		20.7	2.5	0.0		26.9	
Total %	3.2	17.5	2.8	0.0		23,5	4_0	13.9	1.5	0,0		19.4	4.9	24.3	0.9	0,0		30.2	3.7		_				0.963
PHF	0.900	0.825	0,734	0.000		0.873	0.773	0.904	0.929	0.000		0.935	0.798	0.858	0.500	0.000	_			227 Mari	0.700		_	449	1644
Lights	54	272	47	0	100	373	68	225	25	0	4	318	82	406	16	0	100	504	61	347	41	0	_		-
% Lights	100.0		100.0		100	93.7	100,0	95.7	96.2	300	- 14	96.7	98.8	98.5	100.0	-	5	98.6	96.8	98,9	97.6		- 1	98.5	97.0
Other Vehicles	G.		0	0	liks.	25	0	10	1	0	8	11	1	6	0	0	20	7	2	4	_1_	0	_ ×	7	50
% Other Vehicles	0.0	8.4	0.0		-	6.3	0.0	4.3	3.8	0.53		3,3	1.2	1,5	0.0	*	7	1.4	3,2	1.1	2.4			1.5	3.0
Pedestrians		-	7.	-	0		*:	Sec.	-	-	2		2		47	+	3	*	100		±1		- 2	•	-
% Pedestrians	147		348	¥		×	*2	(4)	8	J.E.	tad o	100	€	3	920	•	3500 <u>D</u>	•	10.0		±9	•	100 0) 500	3

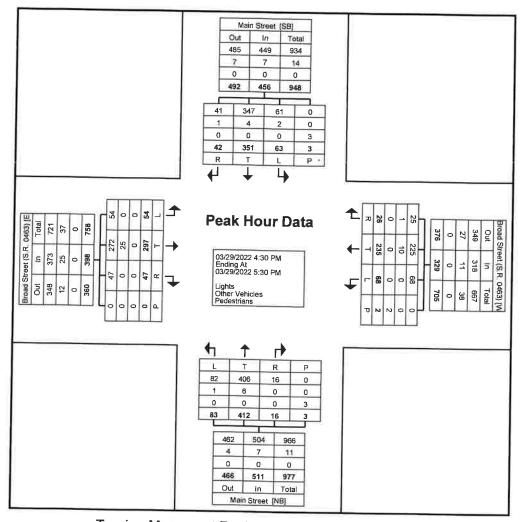
Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610.326.3100

Count Name: Main Street & W. Broad Street (S.R. 0463) Site Code: Start Date: 03/29/2022 Page No: 6

Turning Movement Peak Hour Data Plot (4:30 PM)

Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610.326.3100

Count Name: Main Street & W. Broad Street (S.R. 0463) Site Code: Start Date: 03/29/2022 Page No: 5


Turning Movement Peak Hour Data (4:30 PM)

						I U	, munit	y ivi	OVC	11101	16.1	0011	110					,							
	1	Broa	d Street	(S.R. (0463)			Broa	d Street	(S.R.	0463)				Main :	Street					Main (
	l	5,00		ound					West	pound			l		Northi	bound					South	bound		The state of the s	10
Start Time	Left	Thru	Right	Right on Red	Peds	App. Total	Left	Thru	Right	Right	Peds	App. Total	Left	Thru	Right	Right on Red	Peds	App. Tolal	Left	Thru	Righl	Right on Red	Peds	App. Total	Int. Total
4.00 DM	14	77	14	0	0	105	15	61	7	0	0	83	21	91	-1-	0	C	113	22	102	15	0	0	139	440
4:30 PM	_		8	0	0	76	15	65	7	0	0	87	26	98	2	0	1	126	17_	80	13	0	1	110	399
4:45 PM	11	57		_	_		22	59	7	0	4	88	12	103	8	0	9	123	13	93	3	0	,	109	434
5:00 PM	15	90	. 9	0	0	114	16	50	5	0	$\overline{}$	71	24	120	5	0	2	149	11	76	11	0	2	98	421
5:15 PM	14	73	16	0	0	103	80.0	235	26	0	- 4	329	83	412		0	3	511	63	351	42	0	3	458	1694
Total	54	297	47	0	3	398	68			_			16.2	80.6	3.1	0.0	W	-	13.8	77.0	9.2	0.0	10		
Approach %	13.6	74,6	11.8	0.0	_		20.7	71,4	7.9	0,0	_	40.4	1		0.9	0.0		30.2	3.7	20.7	2.5	0.0		26.9	
Total %	3.2	17.5	2.8	0.0		23.5	4,0	13,9	1_5	0,0	_	19.4	4.9	24.3				0.857	_	0,860				0.820	0.963
PHF	0.900	0.825	0.734	0.000		0.873	0.773	0.904	0.929	0,000			_	0,858	77.		-		61	347	41	0	-	449	1644
Lights	54	272	47	0	4	373	68	225	25	0	-	318	82	406	16	0	_	504	-				_		
% Lights	100.0	91.6	100.0			93.7	100.0	95.7	96.2		-	96.7	98.8	98.5	100.0	•	-	98.6	96,8	98,9	97.6	<u> </u>	_		1
Other Vehicles	0.	25	0	0		25	0	10	1	0	- G	11	1	6	0	0	. 2	7	2	4	1	0		7	50
% Other Vehicles	0.0	8,4	0.0	8		6.3	0.0	4.3	3.8	590		3,3	1.2	1,5	0,0			1.4	3.2	1,1	2.4	•	_	1.5	3.0
Pedestrians					14	9	161	14	- 2	797	1			0.00		-	_ 3			<u> </u>	1.00			_	+
% Pedestrians	19	×	20	3		(i)	427	Œ	9	(2)	100 0			œ	**		100 0	7	1		V 2 3	S.	3000	348	*

Traffic Planning and Design, Inc 2500 East High Street Suite 650 Pottstown, Pennsylvania, United States 19464 610,326,3100

Count Name: Main Street & W. Broad Street (S.R. 0463) Site Code: Start Date: 03/29/2022 Page No: 6

Turning Movement Peak Hour Data Plot (4:30 PM)

APPENDIX C: Traffic Volume Development Data

Trip Distribution Data

APPENDIX C: Traffic Volume Development Data

Trip Distribution Data

Trip Distribution (To/From)		Al	M			P	M			OVERALL	
. , , ,	IN	OUT	TOTAL		IN	OUT	TOTAL		TOTAL		USE
N. Main Street (to/from the north)	500	278	778	29.5%	457	494	951	28.0%	1729	28.7%	29%
S. Main Street (to/from the south)	278	487	765	29.0%	513	467	980	28.8%	1745	28.9%	29%
W. Broad Street (to/from the west)	283	271	554	21.0%	399	361	760	22.4%	1314	21.8%	22%
E. Broad Street (to/from the east)	256	281	537	20.4%	330	377	707	20.8%	1244	20.6%	20%
Total:	1317	1317	2634	100%	1699	1699	3398	100%	6032	100%	100%

1

Volume Development Worksheets

Trip Distribution (To/From)		A	М			P	М			OVERALL	
. , ,	IN	OUT	TOTAL		IN	OUT	TOTAL		TOTAL		USE
N. Main Street (to/from the north)	500	278	778	29.5%	457	494	951	28.0%	1729	28.7%	29%
S. Main Street (to/from the south)	278	487	765	29.0%	513	467	.980	28.8%	1745	28.9%	29%
W. Broad Street (to/from the west)	283	271	554	21.0%	399	361	760	22.4%	1314	21.8%	22%
E. Broad Street (to/from the east)	256	281	537	20.4%	330	377	707	20.8%	1244	20.6%	20%
Total:	1317	1317	2634	100%	1699	1699	3398	100%	6032	100%	100%

Volume Development Worksheets

TPD# PNPG.00002 10/17/2024 Traffic Volumes Worksheet Intersection: Synchro Node:

		Main St	reet (I	V/S) & I	Broad	Street (I	E/W)			
1	Adjacent Intersections:	West	0	East	0	North	0	South	0	

Time Period: Weekday A.M. Peak Hour

		Eastboun	d	V	Vestbour	nd	1	orthbou	nd	S	outhbou	nd	Intersection
	left	T thru	right	left	lhru	right	left	thru	right	left	thru	right	Volume
2022 Existing (Raw) Counts	38	214	30	48	177	30	44	209	24	42	407	49	1312
Base growth (0.21% compounded for 2 yrs)	0	1	0	0	- 1	0	0	1	0	. 0	2	0	5
2024 Existing Volumes (Balanced)	38	215	30	48	178	30	44	210	24	42	409	49	1317
Base growth (0.21% compounded for 2 yrs)	0	1 1	0	0	3	0	0	1	0	0	2	0	5
1000				- 40	1 470	30	- 44	244	1 24	12	411	49	1322
2026 Base Volumes	38	216	30	48	1/9	30	44	211	1 24	1 42	1	- 10	

Site Trips

New
Enter = 1
Exit = 3

	212 24	42	1 442	50	1325
1010	1 · 1 ·				
	1 1 0	0	T 1	1 1	
		21%	2976	24.70	
21%	29%	0407	29%	22%	
	21%	21% 29%	21% 29%	21% 29%	21% 29%

Time Period: Weekday P.M. Peak Hour

	-	Eastboun	d	V	Vestbou	nd	l N	lorthbou	nd	S	outhbou	nd	Intersection
	left	thru	right	left	thru	right	left	thru	right	left	thru	right	Volume
2022 Existing (Raw) Counts	54	297	47	68	235	26	83	412	16	63	351	42	1694
Base growth (0.21% compounded for 2 yrs)	0	1	0	0	1	0	0	2	0	0	1	0	4000
2024 Existing Volumes (Balanced)	54	298	47	68	236	26	83	414	16	63	352	42	1699
Base growth (0.21% compounded for 2 yrs)	0	2	0	0	1	0	0	2	0	0	2	0	7
					1 007	Lac	83	416	T 16	63	354	42	1706
2026 Base Volumes	54	300	4/	68	237	26	03	410	1 10	- 55	204		

Site Trips

New
Enter = 3
Exit = 2

Site Trip Assignment % - Enter	22%					21%		29%					
Site Trip Assignment % - Enter Site Trip Assignment % - Exit										21%	29%	22%	
Total Site Trips	T 1	1 0	1 0	Τ 0	0	0	0	1 1	0	0	1	0	

TPD# PNPG.00002 10/17/2024 Traffic Volumes Worksheet Intersection: Synchro Node:

	N. Main S	Street	& Prop	osed S	Site Driv	eway		
diacent Intersections:	West	0	East		North		South	

Time Period: Weekday A.M. Peak Hour

		Eastboun	d	V	Vestboui	nď		orthbou	nd	S	outhbou	nd	Intersection
2022 Eviatina (D) C	left	thru	right	left	thru	right	left	thru	right	left	thru	right	Volume
2022 Existing (Raw) Counts								277			498		775
Base growth (0.21% compounded for 2 yrs)								1			2		3
2024 Existing Volumes (Balanced)	0	0	0	0	0	0	0	278	0	0	500	0	778
Base growth (0.21% compounded for 2 yrs)											_		
								1			2		3
2026 Base Volumes	[0]	0	0 1	0	_		•	070					781

Site Trips

Enter = 1 Exit = 3

2026 Projected Volumes	117	0	0	0	2	0	1	0	279	1	0	502	0	785
Total Site Trips		0	0	0	2	0	T 1	0	0	1	0	0	0	
Site Trip Assignment % - Exit					71%		29%			71%	29%			
Site Trip Assignment % - Enter				1				_	_	740/	2004		_	

Time Period: Weekday P.M. Peak Hour

		Eastboun	d	V	Vestbou	nd	1	Vorthbou	nd	S	outhbou	nd	Intersection
2022 Euletin - (D) C	left	thru	right	left	thru	right	left	thru	right	left	thru	right	Volume
2022 Existing (Raw) Counts								492			456	11.4111	948
Base growth (0.21% compounded for 2 yrs) 2024 Existing Volumes (Balanced)								2			- 1		3
A CONTRACTOR OF THE CONTRACTOR	1 0	0	0	0	0	0	0	494	0	0	457	0	951
Base growth (0.21% compounded for 2 yrs)								2			2		4
2026 Base Volumes													
AND DODG & DIGHTED		_ 0	0	0	0	0	0	496	0	0	459	0	955

Site Trips

| New | Enter = 3 | | Exit = 2 |

			_									
Fotal Site Trips	 0	0	0	111	0	1 1	0	0	1 2	1	0	
Site Trip Assignment % - Exit				71%		29%			1 70	2070		
Site Trip Assignment % - Enter									71%	29%		

TPD# PNPG.00002 10/17/2024 Traffic Volumes Worksheet

Intersection: Synchro Node:

		Main St	reet (f	V/S) &	Broad S	Street (E/W)			
1	Adjacent intersections:		0	East	0	North	0	South	0	

Time Period: Weekday A.M. Peak Hour

		Eastboun	d	V	Vestbou	nd	N.	Iorthbou	nd	S	outhbou	nd	Intersection
	1.0		right	left	thru	right	left	thru	right	left	thru	right	Volume
	left	thru				30	44	209	24	42	407	49	1312
2022 Existing (Raw) Counts	38	214	30	48	177	30	44	203	1	7-	2	0	- 5
Base growth (0.21% compounded for 2 yrs)	0	1	0	0	1	0	0		0	- 0	400	40	1317
2024 Existing Volumes (Balanced)	38	215	30	48	178	30	44	210	24	42	409	49	1317
	I o	1 3	1 0	0	1 1	0	0	1	0	0	2	0	5
Base growth (0.21% compounded for 2 yrs)			1		-								
2026 Base Volumes	38	216	30	48	179	30	44	211	24	42	411	49	1322

Site Trips

	New	
Enter =	1	
Exit =	3	

	1 2004		7	_		-	21%		29%		T			
Site Trip Assignment % - Enter	22%	_	_	-	+	_	2170		440.10		21%	29%	22%	
Site Trip Assignment % - Exit				_		_							-	
			1 0	1 0	_	0	0	0	T 1	0	1 0	1 1	1	
Total Site Trips	0	0		0	_	0				L U	-			
				1 40		470	20	44	1 212	24	1 42	412	50	1325
2026 Projected Volumes	38	216	30	48	┸	179	30	44	212	24	1 42			

Time Period: Weekday P.M. Peak Hour

		Eastboun	d	V	Vestbou	nd	N	lorthbou	nd	S	outhbou	nd	Intersection
	left	thru	T right	left	thru	right	left	thru	right	left	Ihru	right	Volume
2000 Full-time (David Counts	54	297	47	68	235	26	83	412	16	63	351	42	1694
2022 Existing (Raw) Counts	0	1	0	0	11	0	0	2	0	0	1	0	5
Base growth (0.21% compounded for 2 yrs) 2024 Existing Volumes (Balanced)	54	298	47	68	236	26	83	414	16	63	352	42	1699
Base growth (0.21% compounded for 2 yrs)	1 0	2	Ι ο	0	1	[0	0	2	0	0.	2	0	7
sase growth to 2 176 compounded for 2 yis									1 40		354	42	1706
2026 Base Volumes	54	300	47	68	237	26	83	416	16	63	354	42	1700

Site Trips

	New
Enter =	3
Exit =	2

	229/			T	T	21%		29%					
	22.76		-	1	_	-				21%	29%	22%	
				_									
				T .	1 0		1 0	1	0	0	1 1	Õ	
	1	0_	0	0	U						<u> </u>		
									- 72		1 255	1 42	1709
	55	300	47	68	237	26	83	417	16	6.3	333	42	1703
֡		1	1 0	1 0 0	1 0 0 0	1 0 0 0 0	1 0 0 0 0 0	1 0 0 0 0 0 0	1 0 0 0 0 0 0 1	1 0 0 0 0 0 0 1 0	1 0 0 0 0 0 0 1 0 0	1 0 0 0 0 0 0 1 0 0 1	1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

TPD# PNPG.00002 10/17/2024 Traffic Volumes Worksheet Intersection: Synchro Node:

	N. Main S	Street	& Prop	osed	Site Dri	veway	91	
Adjacent intersections:		0	East	0	North	0	South	0

Time Period: Weekday A.M. Peak Hour

		Eastboun	d	V	Vestbou	nd	1	Vorthbou	nd	S	outhbou	nd	Intersection
2022 Existing (Raw) Counts	left	thru	right	left	thru	right	left	thru	right	left	thru	right	Volume
Base growth (0.21% compounded for 2 yrs)	-							277			498		775
2024 Existing Volumes (Balanced)	- 0	0	0		0		- 0	278			2		3
Base growth (0.21% compounded for 2 yrs)							U	218	U	0	500	0	778
gravar (o.e. 170 dempounded for 2 yrs)								1			2	1	3
2026 Base Volumes	1 0 1	0	1 0 1	0	0	0 1	•	070	-				701

Site Trips

Enter = 1 Exit = 3

2026 Projected Volumes		0	\perp	0	2	\Box T	0	1	0	279	1	0	502	0	785
2000 0		- 0		U	1 4	_	U	1 1	1 0	0	1	0	0	0	
Total Site Trips	n T	0	_	0		_					7				
one mp Assignment % - Ext	 		_		71	%		29%							
Site Trip Assignment % - Enter Site Trip Assignment % - Exit	 -		_		_	\perp					71%	29%			

Time Period: Weekday P.M. Peak Hour

	Eastbound			V	Vestbour	nd	Northbound			Southbound			Intersection
2022 Existing (Raw) Counts	left	thru	right	left	thru	right	left	thru	right	left	thru	right	Volume
Base growth (0.21% compounded for 2 yrs)								492			456	115411	948
2024 Existing Volumes (Balanced)	0	- 0	0	0	0	0	_	2			1		3
Base growth (0.21% compounded for 2 yrs)		-	-		U	U	U	494	0	0	457	0	951
								2			2		4
2026 Base Volumes	0	0	0	0	0	0	•	496			459		955

Site Trips

Enter = 3 Exit = 2

026 Projected Volumes	0	1 0	0	1	0	1	0	496	2	1	459	0	1 960
one h				-		La	0	1 0	2	1_1_	0	0	
Total Site Trips	 0	1 0	1 0	1 1		1		т .					
one mp Assignment % - Exit			1	71%		29%							
Site Trip Assignment % - Enter Site Trip Assignment % - Exit		_	_						71%	29%			

APPENDIX D: Critical and Follow-up Headway Calculations

PNPG.00002 N. Main Street & Site Driveway

Crititcal Headway

			tc base	tc hv	phv	t cg	G	t 3lt	Base Crit
major left	AM	SB L	4.3	1	2%	0	1	1 0	4.3
major iere	PM	SB L	4.3	1	2%	0	1	0	4.3
minor right	AM	WB R	6.2	1	2%	0.1	0	0	6.2
	PM	WB R	6.2	1	2%	0.1	0	0	6.2
minor left	AM	WB L	7.1	1	2%	0.2	0	0.7	6.4
Timot tere	PM	WB L	7.1	1	2%	0.2	0	0.7	6.4

Follow-up headway

			t fbase	_t fhv	phv	Follow-up
major left	AM	SB L	3	0.9	2%	3.0
major left	PM	SB L	3	0.9	2%	3.0
minor right	AM	WB R	3.1	0.9	2%	3.1
THITIOI TIGHT	PM	WB R	3.1	0.9	2%	3.1
minor left	AM	WB L	3	0.9	2%	3,0
minor icit	PM	WB L	3	0.9	2%	3.0

APPENDIX D: Critical and Follow-up Headway Calculations

PNPG.00002 N. Main Street & Site Driveway

Crititcal Headway

			tc base	tc hv	phv	t cg	G	t 3lt	Base Crit
major left	AM	SB L	4.3	1	2%	0	1	0	4.3
Thajor fere	PM	SB L	4.3	1	2%	0	1	0	4.3
minor right	AM	WB R	6.2	1	2%	0.1	0	0	6.2
THE THEFT	PM	WB R	6.2	1	2%	0.1	0	0	6.2
minor left	AM	WB L	7.1	1	2%	0.2	0	0.7	6.4
minor icit	PM	WB L	7.1	1	2%	0.2	0	0.7	6.4

Follow-up headway

			t fbase	t fhv	phv	Follow-up
major left	AM	SB L	3	0.9	2%	3.0
major iere	PM	SB L	3	0.9	2%	3.0
minor right	AM	WBR	3.1	0.9	2%	3.1
THINGI TIGHT	PM	WB R	3.1	0.9	2%	3.1
minor left	AM	WB L	3	0.9	2%	3.0
ior icit	PM	WB L	3	0.9	2%	3.0

APPENDIX E:Capacity Analysis Worksheets

Supporting Calculations

APPENDIX E:Capacity Analysis Worksheets

Supporting Calculations

Heavy Vehicle Calculations for N. Main Street at the Proposed Site Driveway

			Weekday A.N	И. Peak Hour					
N. Main S	Street & Site Driv	eway - Northbound	d Through	N. Main St	reet & Site Drive	way - Southbound	Through		
		ement			Move				
		es traveling from Net (E/W) Intersecti		Percentage of Heavy Vehicles traveling to Main S (N/W) & Broad Street (E/W) Intersection					
Movement	Total Vehicles	Heavy Vehicles		Movement	Total Vehicles	Heavy Vehicles	HV %		
NB T	277	13	HV %	SB T	498	12			
Combined	277	13	5%	Combined	498	12	2%		

			Weekday P.N	/I. Peak Hour					
N Main S	Street & Site Driv	eway - Northboun	d Through	N. Main St	reet & Site Drive	way - Southbound	Through		
14.14(2)		ement			Move				
		es traveling from Net (E/W) Intersect		Percentage of Heavy Vehicles traveling to Main S (N/W) & Broad Street (E/W) Intersection					
Movement	Total Vehicles	Heavy Vehicles		Movement	Total Vehicles	Heavy Vehicles	HV %		
NB T	492	7	HV %	SB T	457	7			
Combined	492	7	1%	Combined 457		7	2%		

Notes:

- (1) HV % = Heavy Vehicle Percentage
- (2) Vehicle count information obtained from the 3/29/2022 Turning Movement Counts
- (3) NB T = EB L + WB R + NB T movements at the Main Street (N/S) $\frac{1}{8}$ Broad Street (E/W) Intersection
- (4) SBT = SBL + SBT + SBR movements at the Main Street (N/S) & Broad Street (E/W) Intersection

Existing Conditions

Heavy Vehicle Calculations for N. Main Street at the Proposed Site Driveway

			Weekday A.M	И. Peak Hour					
N. Main S	Street & Site Driv	eway - Northbound	d Through	N. Main St	reet & Site Drive	way - Southbound	Through		
		ement			Move				
		es traveling from Net (E/W) Intersecti		Percentage of Heavy Vehicles traveling to Main Str (N/W) & Broad Street (E/W) Intersection					
Movement	Total Vehicles	Heavy Vehicles	HV %	Movement	Total Vehicles	Heavy Vehicles	HV %		
NB T	277	13	пv %	SB T	498	12			
Combined	277	13	5%	Combined	498	12	2%		

			Weekday P.N	1. Peak Hour					
N. Main S	Street & Site Driv	eway - Northbound	Through	N. Main St	reet & Site Drive	way - Southbound	Through		
		rement			Move				
		es traveling from Net (E/W) Intersecti		Percentage of Heavy Vehicles traveling to Main Stre (N/W) & Broad Street (E/W) Intersection					
Movement	Total Vehicles	Heavy Vehicles	HV %	Movement	Total Vehicles	Heavy Vehicles	HV %		
NB T	492	7	HV %	SB T	457	7			
Combined	492	7	1%	Combined	7	2%			

Notes:

- (1) HV % = Heavy Vehicle Percentage
- (2) Vehicle count information obtained from the 3/29/2022 Turning Movement Counts
- (3) NB T = EB L + WB R + NB T movements at the Main Street (N/S) & Broad Street (E/W) Intersection
- (4) SB T = SB L + SB T + SB R movements at the Main Street (N/S) & Broad Street (E/W) Intersection

Existing Conditions

1: Main Street & Broad Street **Existing Conditions**

Timing Plan: Weekday A.M. Peak Hour

	*		*	1	-	*	4	†	1	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^		ሻ	ĵ»		37	1>		7	ß	
Traffic Volume (vph)	38	215	30	48	178	30	44	210	24	42	409	49
Future Volume (vph)	38	215	30	48	178	30	44	210	24	42	409	49
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	10	12	12	10	11	11	10	12	12	10	11	11
Grade (%)		-2%			-1%			3%	STATE		1%	
Storage Length (ft)	280		0	100		0	100		0	0		265
Storage Lanes	1		0	1		0	1		0	1		1
Taper Length (ft)	25			25			25			25		200
Right Turn on Red			No	The same	ملاعظم	No			No	1 - 5 10%		No
Link Speed (mph)		25			25			25			25	_
Link Distance (ft)		581		45	338			365			982	
Travel Time (s)		15.8			9.2			10.0			26.8	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles (%)	0%	14%	20%	10%	14%	10%	9%	5%	21%	2%	3%	0%
Shared Lane Traffic (%)	A VOIL OF		200 11					كاليا بصانا				
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2	17.5	1	6	
Permitted Phases	4			8			2			6	- 2	
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase										- INDIAN	OME OF	
Minimum Initial (s)	3.0	11.0	Taval.	3.0	11.0		3.0	10.0		3.0	10.0	
Minimum Split (s)	8.0	16.0		8.0	16.0		8.0	15.0		8.0	15.0	
Total Split (s)	12.0	28.0		12.0	28.0		12.0	33.0		12.0	33.0	
Total Split (%)	14.1%	32.9%		14.1%	32.9%		14.1%	38.8%		14.1%	38.8%	
Yellow Time (s)	3.0	3.0	PARTY.	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0		-1.0	-1.0		-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	LA SE
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max	200	None	Max	No. of	None	None		None	None	

Intersection Summary

Other Area Type:

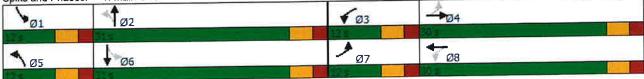
Cycle Length: 85
Actuated Cycle Length: 74.2
Natural Cycle: 60
Control Type: Actuated-Uncoordinated

									mig / idii.		A.W. Fe	ak rioui
	•		*	1	-	•	1	Ť	1	-	. ↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ť	₽		7	1		ሻ	f)		7	4	
Traffic Volume (veh/h)	38	215	30	48	178	30	44	210	24	42	409	49
Future Volume (veh/h)	38	215	30	48	178	30	44	210	24	42	409	49
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No		- 1 10/2-074	No	100,000	1,200	No	1.00
Adj Sat Flow, veh/h/ln	1875	1675	1590	1695	1638	1695	1623	1680	1455	1766	1752	1794
Adj Flow Rate, veh/h	45	256	36	57	212	36	52		27	50	487	58
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	0	14	20	10	14	10	9	5	21	2	3	0.01
Cap, veh/h	422	466	66	364	455	77	223	536	58	423	549	65
Arrive On Green	0.04	0.32	0.31	0.05	0.33	0.32	0.05	0.36	0.35	0.05	0.36	0.34
Sat Flow, veh/h	1785	1437	202	1614	1365	232	1546	1490	161	1682	1536	183
Grp Volume(v), veh/h	45	0	292	57	0	248	52	0	277	50	0	545
Grp Sat Flow(s), veh/h/ln	1785	0	1639	1614	0	1596	1546	0	1651	1682	0	1719
Q Serve(g_s), s	1.2	0.0	10.8	1.7	0.0	9.1	1.5	0.0	9.6	1.4	0.0	22.1
Cycle Q Clear(g_c), s	1.2	0.0	10.8	1.7	0.0	9.1	1.5	0.0	9.6	1.4	0.0	22.1
Prop In Lane	1.00		0.12	1.00		0.15	1.00	-	0.10	1.00	0.0	0.11
Lane Grp Cap(c), veh/h	422	0	532	364	0	532	223	0	593	423	0	614
V/C Ratio(X)	0.11	0.00	0.55	0.16	0.00	0.47	0.23	0.00	0.47	0.12	0.00	0.89
Avail Cap(c_a), veh/h	537	0	532	454	0	532	313	0	647	526	0	674
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	15.6	0.0	20.6	15.6	0.0	19.5	16.9	0.0	18.3	14.1	0.0	22.4
Incr Delay (d2), s/veh	0.1	0.0	4.0	0.2	0.0	2.9	0.5	0.0	0.6	0.1	0.0	12.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.9	0.0	8.1	1.1	0.0	6.6	1.0	0.0	6.5	0.9	0.0	16.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	15.7	0.0	24.6	15.8	0.0	22.4	17.4	0.0	18.9	14.2	0.0	35.3
LnGrp LOS	B_	A	С	В	Α	С	В	Α	В	В	Α	D
Approach Vol, veh/h	T X	337			305			329	YE W	No.	595	77
Approach Delay, s/veh		23.4			21.2			18.6			33.6	
Approach LOS		С			C			В			C	
Timer - Assigned Phs	3.15	2	3	4	5	6	7	8	The same		E TOTAL CO	
Phs Duration (G+Y+Rc), s	7.5	30.6	7.9	28.0	7.7	30.4	7.2	28.7			- ACHILANA	
Change Period (Y+Rc), s	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		100	S. Williams	
Max Green Setting (Gmax), s	7.0	28.0	7.0	23.0	7.0	28.0	7.0	23.0	2 5 1		ME II	
Max Q Clear Time (g_c+l1), s	3.9	11.6	4.2	12.8	4.0	24.1	3.7	11.1				100
Green Ext Time (p_c), s	0.0	1.5	0.0	1.3	0.0	1.3	0.0	1.1			2 ² pri	-000
ntersection Summary	M YE	ISA ME	RI EK	5,55,312		CANE!	1,000	TO SERVICE	I COLUMN	WS/0==		
HCM 6th Ctrl Delay	14-11/8		25.8		الاختيا						The state of the last	
HCM 6th LOS			C						Of the last			=791

Existing Conditions	٠	→	•	•	4-	4	4	†	1	-	1	1
Lana Crayo	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Group	LOC	7		*5	1		N,	₽		7	ĵ.	
Lane Configurations	38	215	30	48	178	30	44	210	24	42	409	49
Traffic Volume (vph)	38	215	30	48	178	30	44	210	24	42	409	49
Future Volume (vph)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Ideal Flow (vphpl)	1000	12	12	10	11	11	10	12	12	10	11	11
Lane Width (ft)	10	-2%			-1%		10 DAY 1	3%	46	15 15	1%	
Grade (%)	280	270	0	100	116.606	0	100		0	0		265
Storage Length (ft) Storage Lanes	1		0	1	1777	0	1		0	1		1
Taper Length (ft)	25	III.O. JOS	90	25		, Ta	25			25		
Right Turn on Red			No			No	MAN TO S		No	1 11 11		No
Link Speed (mph)		25	1.0		25	11.00		25			25	
Link Distance (ft)		581		FILE	338	7	100	365			982	
Travel Time (s)		15.8	100000	100	9.2			10.0			26.8	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles (%)	0%	14%	20%	10%	14%	10%	9%	5%	21%	2%	3%	0%
Shared Lane Traffic (%)				MILLS			Service.		The second			
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	7	4	**-9 E	3	8		5	2		1	6	
Permitted Phases	4			8			2			6		
Detector Phase	7	4	166	3	8	SER	5	2		1	6	
Switch Phase	JASH M											
Minimum Initial (s)	3.0	11.0		3.0	11.0	110	3.0	10.0		3.0	10.0	
Minimum Split (s)	8.0	16.0		8.0	16.0		8.0	15.0		8.0	15.0	
Total Split (s)	12.0	28.0	15.0	12.0	28.0		12.0	33.0		12.0	33.0	
Total Split (%)	14.1%	32.9%		14.1%	32.9%		14.1%	38.8%		14.1%	38.8%	
Yellow Time (s)	3.0	3.0	61-6	3.0	3.0		3.0	3.0		3.0	3.0	27
All-Red Time (s)	2.0	2.0	-	2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0	M- E	-1.0	-1.0		-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		None	Max		None	None		None	None	
Intersection Summary		n KWP		KEZ X		Test V	te ET	Min si	UF YE		ph	
Area Type: (Other	PINNE ST	1- 93					W			100	100
Cycle Length: 85											-	245.00
Actuated Cycle Length: 74.2								100		cin de		
Natural Cycle: 60												VIII III
Control Type: Actuated-Unco	pordinated					-4-1			(PA)			
Splits and Phases: 1: Mair	n Street &	Broad Str	eet									
`\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						1		1				
Van Tan	ł					▼ Ø3		₩04				
Ø1 TØ2						√ Ø3		28 9				

**************************************									ing rian.	vveekuay	A.W. FE	ak i loui
	۶	-	7	•	•	*	4	†	1	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		19	7>		*	1>	mistak	*	1>	001
Traffic Volume (veh/h)	38	215	30	48	178	30	44	210	24	42	409	49
Future Volume (veh/h)	38	215	30	48	178	30	44	210	24	42	409	49
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00	U	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No	1.00	1.00	No	1.00
Adj Sat Flow, veh/h/ln	1875	1675	1590	1695	1638	1695	1623	1680	1455	1766	1752	1794
Adj Flow Rate, veh/h	45	256	36	57	212	36	52	250	27	50	487	58
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	0	14	20	10	14	10	9	5	21	2	3	0.04
Cap, veh/h	422	466	66	364	455	77	223	536	58	423	549	65
Arrive On Green	0.04	0.32	0.31	0.05	0.33	0.32	0.05	0.36	0.35	0.05	0.36	0.34
Sat Flow, veh/h	1785	1437	202	1614	1365	232	1546	1490	161	1682	1536	183
Grp Volume(v), veh/h	45	0	292	57	0	248	52	0	277	50		
Grp Sat Flow(s), veh/h/ln	1785	0	1639	1614	0	1596	1546	0	1651	1682	0	545
Q Serve(g_s), s	1.2	0.0	10.8	1.7	0.0	9.1	1.5	0.0	9.6		0	1719
Cycle Q Clear(g_c), s	1.2	0.0	10.8	1.7	0.0	9.1	1.5	0.0	9.6	1.4	0.0	22.1
Prop In Lane	1.00		0.12	1.00	0.0	0.15	1.00	0.0	0.10	1.00	0.0	22.1
Lane Grp Cap(c), veh/h	422	0	532	364	0	532	223	0	59 3	423		0.11
V/C Ratio(X)	0.11	0.00	0.55	0.16	0.00	0.47	0.23	0.00	0.47	0.12	0	614
Avail Cap(c_a), veh/h	537	0	532	454	0.00	532	313	0.00	647	526	0.00	0.89
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	674
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00		1.00
Uniform Delay (d), s/veh	15.6	0.0	20.6	15.6	0.0	19.5	16.9	0.0	18.3	14.1	0.00	1.00
Incr Delay (d2), s/veh	0.1	0.0	4.0	0.2	0.0	2.9	0.5	0.0	0.6	0.1	0.0	22.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.9
%ile BackOfQ(95%),veh/ln	0.9	0.0	8.1	1.1	0.0	6.6	1.0	0.0	6.5	0.0	0.0	0.0
Unsig. Movement Delay, s/veh			0.1		0.0	0.0	1.0	0.0	0.0	0.9	0.0	16.0
LnGrp Delay(d),s/veh	15.7	0.0	24.6	15.8	0.0	22.4	17.4	0.0	18.9	14.2	0.0	05.0
LnGrp LOS	В	Α	C	В	A	C	В	Α	10.9 B	14.2 B	0.0 A	35.3
Approach Vol, veh/h		337			305	N C I I	NAME OF TAXABLE PARTY.	329				D
Approach Delay, s/veh		23.4			21.2			18.6	-11	Fig. 11	595	-913
Approach LOS	77	C		1,932	C	100		10.0 B	N EWNE		33.6	-
Timer - Assigned Phs	40								IT FORGE	14 111	С	
Phs Duration (G+Y+Rc), s		2	3	4	5	6	7	8	المتحد	Sept 1	1419	
	7.5	30.6	7.9	28.0	7.7	30.4	7.2	28.7				
Change Period (Y+Rc), s	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	28.0	7.0	23.0	7.0	28.0	7.0	23.0	- 453			3 /4
Max Q Clear Time (g_c+l1), s	3.9	11.6	4.2	12.8	4.0	24.1	3.7	11.1				
Green Ext Time (p_c), s	0.0	1.5	0.0	1.3	0.0	1.3	0.0	1.1	48			
ntersection Summary		N. Park	274	1883	A TEST		September 1	day.			تتلويل	To dis
HCM 6th Ctrl Delay		1	25.8	Land .					1 3 1			ALR
HCM 6th LOS			C									-

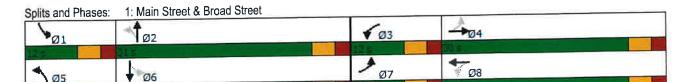
-	•	→	•	•	←	4	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		Y	1>		J.	B		7	1	-
Traffic Volume (vph)	54	298	47	68	236	26	83	414	16	63	352	42
Future Volume (vph)	54	298	47	68	236	26	83	414	16	63	352	42
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	10	12	12	10	11	11	10	12	12	10	11	11
Grade (%)		-2%	170-19		-1%			3%			1%	
Storage Length (ft)	280		0	100		0	100		0	0		265
Storage Lanes	1	1	0	1		0	1		0	1	12.13.20	1
Taper Length (ft)	25			25			25			25		
Right Turn on Red	100		No			No			No			No
Link Speed (mph)		25			25			25			25	
Link Distance (ft)	100	581	21 - 11		338			365		-0.00	982	5 316
Travel Time (s)		15.8			9.2			10.0			26.8	14/22
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	0%	8%	0%	0%	4%	4%	1%	2%	0%	3%	1%	2%
Shared Lane Traffic (%)											113/11	-570
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2	-51	1	6	100
Permitted Phases	4			8			2			6		
Detector Phase	7	4		3	8	رقدا".	5	2	MAN	1	6	1
Switch Phase											1222	
Minimum Initial (s)	3.0	11.0		3.0	11.0	V 100	3.0	10.0		3.0	10.0	
Minimum Split (s)	8.0	16.0		8.0	16.0		8.0	15.0		8.0	15.0	_
Total Split (s)	12.0	30.0		12.0	30.0	AL THE	12.0	31.0	344	12.0	31.0	
Total Split (%)	14.1%	35.3%		14.1%	35.3%		14.1%	36.5%		14.1%	36.5%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	-
Lost Time Adjust (s)	-1.0	-1.0		-1.0	-1.0	fiel w	-1.0	-1.0	1,53	-1.0	-1.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	No.
Lead/Lag	Lead	Lag		Lead	Lag	No. of the	Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	Sec.
Recall Mode	None	Max		None	Max		None	None		None	None	


Intersection Summary

Area Type: Other

Cycle Length: 85
Actuated Cycle Length: 77

Natural Cycle: 60 Control Type: Actuated-Uncoordinated



Movement Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/In Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, % Cap, veh/h Arrive On Green	54 54 54 0 1.00 1.00 1875 56 0.96 0 470 0.05 1785	298 298 298 0 1.00 No 1761 310 0.96 8 528 0.36 1484	47 47 0 1.00 1.00 1875 49 0.96 0 83 0.34	WBL 68 68 0 1.00 1.00 1837 71 0.96 0 395	236 236 236 0 1.00 No 1780 246 0.96 4	26 26 0 1.00 1.00 1780 27 0.96	NBL 83 83 0 1.00 1.00 1736 86 0.96	NBT 1- 414 414 0 1.00 No 1722 431	NBR 16 16 0 1.00 1.00 1750 17	63 63 0 1.00 1.00	\$BT \$352 352 352 0 1.00 No 1780 367	42 42 0 1.00 1.00 1766 44
Lane Configurations Traffic Volume (veh/h) Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/In Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, % Cap, veh/h	54 54 0 1.00 1.00 1.875 56 0.96 0 470 0.05 1785	298 298 0 1.00 No 1761 310 0.96 8 528 0.36	47 47 0 1.00 1.00 1.00 1875 49 0.96 0 83	68 68 0 1.00 1.00 1.00 1837 71 0.96	236 236 0 1.00 No 1780 246 0.96	26 26 0 1.00 1.00	83 83 0 1.00 1.00	1.00 No 1722 431	16 16 0 1.00 1.00 1750	63 63 0 1.00 1.00 1752 66	352 352 352 0 1.00 No 1780	42 42 0 1.00 1.00
Traffic Volume (veh/h) Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, % Cap, veh/h	54 54 0 1.00 1.00 1875 56 0.96 0 470 0.05 1785 56	298 298 0 1.00 No 1761 310 0.96 8 528 0.36	47 0 1.00 1.00 1.875 49 0.96 0	68 68 0 1.00 1.00 1.00 1837 71 0.96 0	236 236 0 1.00 No 1780 246 0.96	26 0 1.00 1.00 1780 27	83 83 0 1.00 1.00	414 414 0 1.00 No 1722 431	16 0 1.00 1.00 1.750	63 63 0 1.00 1.00 1.752 66	352 352 0 1.00 No 1780	1.00 1.00 1.00
Future Volume (veh/h) Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/In Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, % Cap, veh/h	54 0 1.00 1.00 1875 56 0.96 0 470 0.05 1785	298 0 1.00 No 1761 310 0.96 8 528 0.36	47 0 1.00 1.00 1.875 49 0.96 0	68 0 1.00 1.00 1837 71 0.96 0	236 0 1.00 No 1780 246 0.96	26 0 1.00 1.00 1780 27	83 0 1.00 1.00 1736 86	414 0 1.00 No 1722 431	16 0 1.00 1.00 1.750	63 0 1.00 1.00 1.752 66	352 0 1.00 No 1780	1.00 1.00 1.00
Initial Q (Qb), veh Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/In Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, % Cap, veh/h	0 1.00 1.00 1875 56 0.96 0 470 0.05 1785	1.00 No 1761 310 0.96 8 528 0.36	0 1.00 1.00 1875 49 0.96 0	0 1.00 1.00 1837 71 0.96 0	1.00 No 1780 246 0.96	1.00 1.00 1.00	0 1.00 1.00 1736 86	1.00 No 1722 431	1.00 1.00 1.00	1.00 1.00 1.00	1.00 No 1780	1.00 1.00 1766
Ped-Bike Adj(A_pbT) Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, % Cap, veh/h	1.00 1.00 1875 56 0.96 0 470 0.05 1785	1.00 No 1761 310 0.96 8 528 0.36	1.00 1.00 1875 49 0.96 0	1.00 1.00 1837 71 0.96 0	1.00 No 1780 246 0.96	1.00 1.00 1780 27	1.00 1.00 1736 86	1.00 No 1722 431	1.00 1.00 1750	1.00 1.00 1752 66	1.00 No 1780	1.00 1.00
Parking Bus, Adj Work Zone On Approach Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, % Cap, veh/h	1.00 1875 56 0.96 0 470 0.05 1785	No 1761 310 0.96 8 528 0.36	1.00 1875 49 0.96 0	1.00 1837 71 0.96 0	No 1780 246 0.96	1.00 1780 27	1.00 1736 86	No 1722 431	1.00 1750 17	1.00 1752 66	No 1780	1.00
Work Zone On Approach Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, % Cap, veh/h	1875 56 0.96 0 470 0.05 1785	No 1761 310 0.96 8 528 0.36	1875 49 0.96 0	1837 71 0.96 0	No 1780 246 0.96	1780 27	1736 86	No 1722 431	1750 17	1752 66	No 1780	1766
Adj Sat Flow, veh/h/ln Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, % Cap, veh/h	56 0.96 0 470 0.05 1785 56	1761 310 0.96 8 528 0.36	49 0.96 0 83	71 0.96 0	1780 246 0.96	27	86	1722 431	17	66	1780	
Adj Flow Rate, veh/h Peak Hour Factor Percent Heavy Veh, % Cap, veh/h	56 0.96 0 470 0.05 1785 56	310 0.96 8 528 0.36	49 0.96 0 83	71 0.96 0	246 0.96	27	86	431	17	66		
Peak Hour Factor Percent Heavy Veh, % Cap, veh/h	0.96 0 470 0.05 1785	0.96 8 528 0.36	0.96 0 83	0.96 0	0.96		The state of the s				367	44
Percent Heavy Veh, % Cap, veh/h	0 470 0.05 1785 56	8 528 0.36	0 83	0		0.96	0.06		0.00			
Cap, veh/h	470 0.05 1785 56	528 0.36	83		Δ		1000000000	0.96	0.96	0.96	0.96	0.96
	0.05 1785 56	0.36		สนา		4	1	2	0	_ 3	1_	2
Arrive i in Green	1785 56		11.34		575	63	293	505	20	257	460	55
Sat Flow, veh/h	56	1404		0.06	0.36	0.35	0.07	0.31	0.29	0.06	0.30	0.28
Grp Volume(v), veh/h			235	1750	1576	173	1653	1645	65	1669	1560	187
Grp Sat Flow(s), veh/h/in		0	359	71	0	273	86	0	448	66	0	411
Q Serve(g_s), s	1785	0	1719	1750	0	1749	1653	0	1710	1669	0	1747
Cycle Q Clear(g_c), s	1.4	0.0	12.4	1.8	0.0	8.6	2.5	0.0	18.0	1.9	0.0	15.9
Prop In Lane	1.4	0.0	12.4	1.8	0.0	8.6	2.5	0.0	18.0	1.9	0.0	15.9
Lane Grp Cap(c), veh/h	1.00		0.14	1.00		0.10	1.00		0.04	1.00		0.11
V/C Ratio(X)	470	0	612	395	0	638	293	0	525	257	0	515
Avail Cap(c_a), veh/h	0.12 576	0.00	0.59	0.18	0.00	0.43	0.29	0.00	0.85	0.26	0.00	0.80
HCM Platoon Ratio		0	612	483	0	638	356	0	632	341	0	646
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Incr Delay (d2), s/veh	13.7	0.0	19.2	14.1	0.0	17.5	17.3	0.0	23.8	17.9	0.0	23.8
Initial Q Delay(d3),s/veh	0.0	0.0	4.1	0.2	0.0	2.1	0.6	0.0	9.4	0.5	0.0	5.6
%ile BackOfQ(95%),veh/ln	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh	1.0	0.0	9.3	1.3	0.0	6.6	1.7	0.0	13.0	1.4	0.0	11.4
_nGrp Delay(d),s/veh	13.8	0.0	23.3	440	0.0	40.0	47.0					
LnGrp LOS	13.0 B	Α		14.3	0.0	19.6	17.8	0.0	33.2	18.4	0.0	29.4
Approach Vol, veh/h			С	В	A	В	В	A	C	B	A	C
Approach Delay, s/veh	175.00	415			344	44.4		534	La la		477	
Approach LOS		22.0 C	-	-	18.5	_		30.7			27.8	
		C			В			С			С	
Firmer - Assigned Phs	5 1.º	2	3	4	5	6	7	8	141		distribution.	
Phs Duration (G+Y+Rc), s	8.3	26.4	8.3	30.0	9.2	25.6	7.7	30.6		ALC: USA	Legal	
Change Period (Y+Rc), s	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0				1000
Max Green Setting (Gmax), s	7.0	26.0	7.0	25.0	7.0	26.0	7.0	25.0		VVIII I	Mules	C 84
Max Q Clear Time (g_c+l1), s	4.4	20.0	4.3	14.4	5.0	17.9	3.9	10.6				
Green Ext Time (p_c), s	0.0	1.5	0.0	1.7	0.0	1.7	0.0	1.4	g, re			
ntersection Summary		**E.X.E		SYNVIII		TE IEU	and the state of	LE YOU E	The same			
ICM 6th Ctrl Delay	66.5	THE REAL PROPERTY.	25.5		17.7	3					MENONE	2 1b2 s
ICM 6th LOS			C							44.4	100	

	×	-	*	1		*	4	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>		*	1		M	f)		*1	B	
Traffic Volume (vph)	54	298	47	68	236	26	83	414	16	63	352	42
Future Volume (vph)	54	298	47	68	236	26	83	414	16	63	352	42
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	10	12	12	10	11	11	10	12	12	10	11	11
Grade (%)		-2%			-1%			3%		12/15	1%	
Storage Length (ft)	280	11	0	100		0	100		0	0		265
Storage Lanes		4	0	1	SHAP Y	0	1		0	1		1
Taper Length (ft)	25	1042		25			25		- 11	25		10.01
Right Turn on Red			No			No			No			No
Link Speed (mph)		25			25			25			25	
Link Distance (ft)		581	171		338			365			982	
Travel Time (s)		15.8			9.2			10.0			26.8	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	0%	8%	0%	0%	4%	4%	1%	2%	0%	3%	1%	2%
Shared Lane Traffic (%)		1300										
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	7	4	A Paris	3	8		5	2		1	6	
Permitted Phases	4			8			2			6		
Detector Phase	7	4		3	8		5	2	عديا	1	6	
Switch Phase												
Minimum Initial (s)	3.0	11.0		3.0	11.0		3.0	10.0		3.0	10.0	200
Minimum Split (s)	8.0	16.0		8.0	16.0		8.0	15.0		8.0	15.0	
Total Split (s)	12.0	30.0	S FAN	12.0	30.0		12.0	31.0		12.0	31.0	
Total Split (%)	14.1%	35.3%		14.1%	35.3%		14.1%	36.5%		14.1%	36.5%	
Yellow Time (s)	3.0	3.0	TKI F	3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0	Times	-1.0	-1.0		-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	7	Lead	Lag		Lead	Lag	والمروا	Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max	Ty v	None	Max		None	None		None	None	11.05%
Intersection Summary	YE REP	V 7,0 12						- // / / / / / / / / / / / / / / / / /			MICHAEL	2010
Area Type:	Other	ar Lt			N. Person	1		100		Late.		
Cycle Length: 85					- Clas			THE PERSON NAMED IN		ESTALIST .	-	
Actuated Cycle Length: 77												

Actuated Cycle Length: 77
Natural Cycle: 60

	•	-	*	*	-	•	1		1	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	7		7	1		14	f		7	1>	
Traffic Volume (veh/h)	54	298	47	68	236	26	83	414	16	63	352	42
Future Volume (veh/h)	54	298	47	68	236	26	83	414	16	63	352	42
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00	No.	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	2000	No	VV =100		No			No			No	
Adj Sat Flow, veh/h/ln	1875	1761	1875	1837	1780	1780	1736	1722	1750	1752	1780	1766
Adj Flow Rate, veh/h	56	310	49	71	246	27	86	431	17	66	367	44
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	0	8	0	0	4	4	1	2	0	3	1	2
Cap, veh/h	470	528	83	395	575	63	293	505	20	257	460	55
Arrive On Green	0.05	0.36	0.34	0.06	0.36	0.35	0.07	0.31	0.29	0.06	0.30	0.28
Sat Flow, veh/h	1785	1484	235	1750	1576	173	1653	1645	65	1669	1560	187
Grp Volume(v), veh/h	56	0	359	71	0	273	86	0	448	66	0	411
Grp Sat Flow(s), veh/h/ln	1785	0	1719	1750	0	1749	1653	0	1710	1669	0	1747
Q Serve(g_s), s	1.4	0.0	12.4	1.8	0.0	8.6	2.5	0.0	18.0	1.9	0.0	15.9
Cycle Q Clear(g_c), s	1.4	0.0	12.4	1.8	0.0	8.6	2.5	0.0	18.0	1.9	0.0	15.9
Prop In Lane	1.00		0.14	1.00		0.10	1.00		0.04	1.00		0.11
Lane Grp Cap(c), veh/h V/C Ratio(X)	470	0	612	395	0	638	293	0	525	257	0	515
	0.12	0.00	0.59	0.18	0.00	0.43	0.29	0.00	0.85	0.26	0.00	0.80
Avail Cap(c_a), veh/h HCM Platoon Ratio	576	0	612	483	0	638	356	0	632	341	0	646
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I) Uniform Delay (d), s/veh	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Incr Delay (d2), s/veh	13.7	0.0	19.2	14.1	0.0	17.5	17.3	0.0	23.8	17.9	0.0	23.8
Initial Q Delay(d3),s/veh	0.1	0.0	4.1	0.2	0.0	2.1	0.6	0.0	9.4	0.5	0.0	5.6
%ile BackOfQ(95%),veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh	1.0	0.0	9.3	1.3	0.0	6.6	1.7	0.0	13.0	1.4	0.0	11.4
LnGrp Delay(d),s/veh	13.8	0.0	00.0	440								
LnGrp LOS	13.6 B	0.0 A	23.3	14.3	0.0	19.6	17.8	0.0	33.2	18.4	0.0	29.4
Approach Vol, veh/h	В		С	В	Α	В	B	A	С	В	A	<u>C</u>
Approach Delay, s/veh		415 22.0			344			534			477	
Approach LOS				-	18.5			30.7			27.8	
		С			В	11.		С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8	A 11 3 11	777		
Phs Duration (G+Y+Rc), s	8.3	26.4	8.3	30.0	9.2	25.6	7.7	30.6				
Change Period (Y+Rc), s	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	26.0	7.0	25.0	7.0	26.0	7.0	25.0	West,	To the last	1000	
Max Q Clear Time (g_c+l1), s	4.4	20.0	4.3	14.4	5.0	17.9	3.9	10.6	SELECTION.			
Green Ext Time (p_c), s	0.0	1.5	0.0	1.7	0.0	1.7	0.0	1.4		SEE M	100 - A) (
Intersection Summary					PA (Inte		F 180 8			Eiron on	(C)USCAL	THE REAL PROPERTY.
HCM 6th Ctrl Delay		1064	25.5	1	1							
HCM 6th LOS			С					11 " (2)			4-12-35	100

2026 Base (No-Build) Conditions

	•	-	*	1	-	*	1	†	~	/	 	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	-	1>		7	p		ň	4		7	4	ODA
Traffic Volume (vph)	38		30	48	179	30	44	211	24	42	411	49
Future Volume (vph)	38	216	30	48	179	30	44	211	24	42	411	49
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	10	12	12	10	11	11	10	12	12	10	11	11
Grade (%)	D. W. Sall	-2%		1712	-1%	غند	10.0	3%	12	10	1%	C-1 300//
Storage Length (ft)	280		0	100	170	0	100	3 /0	0	0	170	265
Storage Lanes	5 6 1	100	0	1	11000	0	1		0	1		
Taper Length (ft)	25			25		U	25	N. P. S.	U	25		1
Right Turn on Red		Della State	No		10000	No	2.0	100	No	25		NI-3
Link Speed (mph)		25			25	140		25	NO		OF.	No
Link Distance (ft)		581	1	43.40	338	49.5		365	Name of the last		25	
Travel Time (s)		15.8			9.2	-4.00		10.0	12.00	ille , i	982	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.04	26.8	0.04
Heavy Vehicles (%)	0%	14%	20%	10%	14%	10%	9%	5%		0.84	0.84	0.84
Shared Lane Traffic (%)		1170	2070	10 70	14 /0	1076	9%	5%	21%	2%	3%	0%
Turn Type	pm+pt	NA		pm+pt	NA		nm Lat	NA	100	STATE OF		3. 3
Protected Phases	7	4	The last	3	8	on to you	pm+pt 5	2		pm+pt	NA	-
Permitted Phases	4			8	U		2		1000	1	6	
Detector Phase	7	4		3	8		5	2		6		-
Switch Phase	EMILION NO.			J	0		5			1	6	14
Minimum Initial (s)	3.0	11.0	-112-010	3.0	11.0	SULTANIA.	3.0	10.0	SHIERRA	0.0	40.0	
Minimum Split (s)	8.0	16.0		8.0	16.0		8.0	10.0 15.0		3.0	10.0	
Total Split (s)	12.0	28.0	-	12.0	28.0				-	8.0	15.0	-
Total Split (%)	14.1%	32.9%		14.1%	32.9%		12.0	33.0	100	12.0	33.0	
Yellow Time (s)	3.0	3.0	-	3.0	3.0	-	14.1%	38.8%		14.1%	38.8%	-
All-Red Time (s)	2.0	2.0	TO THE	2.0	2.0	LILET S	3.0	3.0	T.	3.0	3.0	1
Lost Time Adjust (s)	-1.0	-1.0	-	-1.0		-	2.0	2.0	-	2.0	2.0	
Total Lost Time (s)	4.0	4.0		4.0	-1.0		-1.0	-1.0		-1.0	-1.0	_8 e
Lead/Lag	Lead	Lag	0.715.15		4.0	-	4.0	4.0		4.0	4.0	
Lead-Lag Optimize?	Yes	Yes	Allie S	Lead	Lag		Lead	Lag		Lead	Lag	
Recall Mode	None	Max		Yes	Yes	_	Yes	Yes		Yes	Yes	
COOL MOUG	IVOHE	Max		None	Max		None	None		None	None	100

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 74.3

Natural Cycle: 60

2026 Base (No-Build) Conditions

	•	→	*	•	-	1	1	†	<i>></i>	1	 	1
Lane Group	EBL		EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	-	†		7		- 100-100	ሻ	7	14571	T	7	ODIN
Traffic Volume (vph)	38		30	48		30	44	211	24	42	411	49
Future Volume (vph)	38	216	30	48		30	44	211	24	42	411	49
Ideal Flow (vphpl)	1800		1800	1800		1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	10		12	10		11	10	12	12	1000	11	11
Grade (%)	100	-2%	6114	TO COMP	-1%	DVY S		3%	12	10	1%	
Storage Length (ft)	280		0	100	170	0	100	3/0	0	0	170	205
Storage Lanes	5 70 1	UT TO BE	0	1		0	1	-	0	1	The Valley	265
Taper Length (ft)	25	200		25		U	25		U	25		1
Right Turn on Red	100	HOVE O	No	DELLI)	ST IN STATE	No	25	84-11-7	No	25	STATE OF THE PARTY OF	No
Link Speed (mph)		25			25	110		25	NO		25	INO
Link Distance (ft)	1.7.5.1	581	70.14		338	AL R.	2 - C R	365				-
Travel Time (s)		15.8			9.2			10.0		75 - 77	982	34,55
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.04	26.8	0.04
Heavy Vehicles (%)	0%	14%	20%	10%	14%	10%	9%	5%	21%	0.84	0.84	0.84
Shared Lane Traffic (%)			2070	1070	17/0	10 /6	9 /0	3%	21%	2%	3%	0%
Turn Type	pm+pt	NA		pm+pt	NA	- 1	pm+pt	NA	0.		NI A	X
Protected Phases	7	4		3	8		5	2	William In	pm+pt	NA	
Permitted Phases	4			8	0		2	2		1	6	
Detector Phase	7	4		3	8		5	2		6	0	
Switch Phase	V V.St	- 2		Ů.			J		, E		6	
Minimum Initial (s)	3.0	11.0		3.0	11.0	1000	3.0	10.0		2.0	40.0	المحد
Minimum Split (s)	8.0	16.0		8.0	16.0		8.0	15.0		3.0	10.0	37.77
Total Split (s)	12.0	28.0		12.0	28.0	V 80	12.0	33.0	_	8.0	15.0	
Total Split (%)	14.1%	32.9%	W OZ	14.1%	32.9%		14.1%	38.8%		12.0	33.0	
ellow Time (s)	3.0	3.0	19/4-1	3.0	3.0	1-30-	3.0	3.0		14.1%	38.8%	
Ali-Red Time (s)	2.0	2.0	A STATE OF	2.0	2.0		2.0	2.0	ALC: NO	3.0	3.0	-10-1
ost Time Adjust (s)	-1.0	-1.0	WINE.	-1.0	-1.0	-	-1.0	-1.0		2.0	2.0	
otal Lost Time (s)	4.0	4.0	No.	4.0	4.0		4.0	4.0	i consu	-1.0	-1.0	
ead/Lag	Lead	Lag	100	Lead	Lag					4.0	4.0	
ead-Lag Optimize?	Yes	Yes		Yes	Yes	T XV)	Lead Yes	Lag Yes	1102	Lead	Lag	
lecall Mode	None	Max		None	Max		None	None	W. P.	Yes	Yes None	I
ntersection Summary	4000	MICHIGAN.	No.					.10110	-	140116	None	

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 74.3 Natural Cycle: 60

Control Type: Actuated-Uncoordinated

Splits and Phases: 1: Main Street & Broad Street

	۶	→	*	•	+	*	4	†	1	>	ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1→		7	₽		T	7		7	1>	
Traffic Volume (veh/h)	38	216	30	48	179	30	44	211	24	42	411	49
Future Volume (veh/h)	38	216	30	48	179	30	44	211	24	42	411	49
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	- 1007/25	No			No			No			No	
Adj Sat Flow, veh/h/ln	1875	1675	1590	1695	1638	1695	1623	1680	1455	1766	1752	1794
Adj Flow Rate, veh/h	45	257	36	57	213	36	52	251	27	50	489	58
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	0	14	20	10	14	10	9	5	21	2	3	0
Cap, veh/h	420	466	65	363	455	77	222	537	58	423	550	65
Arrive On Green	0.04	0.32	0.31	0.05	0.33	0.32	0.05	0.36	0.35	0.05	0.36	0.34
Sat Flow, veh/h	1785	1438	201	1614	1366	231	1546	1490	160	1682	1537	182
Grp Volume(v), veh/h	45	0	293	57	0	249	52	0	278	50	0	547
Grp Sat Flow(s), veh/h/ln	1785	0	1639	1614	0	1597	1546	0	1651	1682	0	1719
Q Serve(g_s), s	1.2	0.0	10.9	1.7	0.0	9.1	1.5	0.0	9.6	1.4	0.0	22.2
Cycle Q Clear(g_c), s	1.2	0.0	10.9	1.7	0.0	9.1	1.5	0.0	9.6	1.4	0.0	22.2
Prop In Lane	1.00		0.12	1.00		0.14	1.00		0.10	1.00		0.11
Lane Grp Cap(c), veh/h	420	0	531	363	0	531	222	0	595	423	0	615
V/C Ratio(X)	0.11	0.00	0.55	0.16	0.00	0.47	0.23	0.00	0.47	0.12	0.00	0.89
Avail Cap(c_a), veh/h	535	0	531	452	0	531	313	0	646	526	0	673
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	15.6	0.0	20.7	15.7	0.0	19.6	16.9	0.0	18.3	14.1	0.0	22.4
Incr Delay (d2), s/veh	0.1	0.0	4.1	0.2	0.0	2.9	0.5	0.0	0.6	0.1	0.0	13.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(95%),veh/ln	0.9	0.0	8.2	1.1	0.0	6.7	1.0	0.0	6.5	0.9	0.0	16.1
Unsig. Movement Delay, s/veh			- "								-	
LnGrp Delay(d),s/veh	15.7	0.0	24.8	15.9	0.0	22.5	17.4	0.0	18.8	14.2	0.0	35.5
LnGrp LOS	В	Α	С	В	Α	С	В	Α	В	В	Α	D
Approach Vol, veh/h	20	338	THE P	FIFT S	306			330	159.7		597	
Approach Delay, s/veh		23.6			21.3			18.6			33.8	
Approach LOS	,	С	. 700	9.59	C	M D	2.5	В			С	
Timer - Assigned Phs	1	2	3	4.	5	6	7	8		عليها	12.11	
Phs Duration (G+Y+Rc), s	7.5	30.7	7.9	28.0	7.7	30.5	7.3	28.7	X T	110		1-12
Change Period (Y+Rc), s	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0		1000		OH THE
Max Green Setting (Gmax), s	7.0	28.0	7.0	23.0	7.0	28.0	7.0	23.0	The of			TERLE
Max Q Clear Time (g_c+l1), s	3.9	11.6	4.2	12.9	4.0	24.2	3.7	11.1				CHEVEN
Green Ext Time (p_c), s	0.0	1.5	0.0	1.3	0.0	1.3	0.0	1.1				
Intersection Summary				- / VED								SEL C
HCM 6th Ctrl Delay		TVA.	26.0	2 m S		87.71	1000	-	1000			
HCM 6th LOS			C									

	۶	-	•	•	+	•	4	†	~	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ»		7	P		7	13		7		OUI
Traffic Volume (vph)	54	300	47	68	237	26	83	416	16	63	354	42
Future Volume (vph)	54	300	47	68	237	26	83	416	16	63	354	42
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	10	12	12	10	11	11	10	12	12	10	11	11
Grade (%)		-2%		100	-1%	THE P		3%			1%	
Storage Length (ft)	280		0	100		0	100	0,0	0	0	1 /0	265
Storage Lanes	1	din visi	0	- 1		0	1		0	1	- Charles	1
Taper Length (ft)	25			25			25		U	25		
Right Turn on Red		W. 17.	No		A PAGE	No		JE 33.28	No	25	V-7-	No
Link Speed (mph)		25			25			25	140	- A	25	INU
Link Distance (ft)	1967-14	581		177	338	111/9		365		2.34.730	982	
Travel Time (s)		15.8			9.2			10.0			26.8	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	0%	8%	0%	0%	4%	4%	1%	2%	0.90	3%	1%	
Shared Lane Traffic (%)	Towns Services			entere in			170	2 /0	0 78	3 /0	1 70	2%
Turn Type	pm+pt	NA		pm+pt	NA	-	pm+pt	NA		pm+pt	NA	
Protected Phases	7	4	No.	3	8	1 - 1	5	2		1	1NA 6	
Permitted Phases	4	10076		8		-	2	- 4		6	0	
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase						-	J				0	-
Minimum Initial (s)	3.0	11.0	12 - 3	3.0	11.0	W 17	3.0	10.0	-	3.0	10.0	
Minimum Split (s)	8.0	16.0		8.0	16.0		8.0	15.0		8.0	15.0	-
Total Split (s)	12.0	30.0	V	12.0	30.0	3 - 1 349	12.0	31.0		12.0	31.0	
Total Split (%)	14.1%	35.3%		14.1%	35.3%		14.1%	36.5%		14.1%	36.5%	-
Yellow Time (s)	3.0	3.0	1000	3.0	3.0	345	3.0	3.0		3.0	3.0	1
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0	7.0	-1.0	-1.0	713. J. No.	-1.0	-1.0	-	-1.0	-1.0	- 1
Total Lost Time (s)	4.0	4.0	-	4.0	4.0		4.0	4.0	-	4.0	4.0	-8 2
Lead/Lag	Lead	Lag		Lead	Lag	400	Lead	Lag	-	Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes	1 1 1 1 1 1 1 1 1 1	Yes	Yes	-01	Yes	Lag Yes	
Recall Mode	None	Max	4	None	Max		None	None	-	None	None	Total De
Interception Cumment		-					.10110	HOIL		None	None	- 4

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 77.1

Natural Cycle: 60

Control Type: Actuated-Uncoordinated

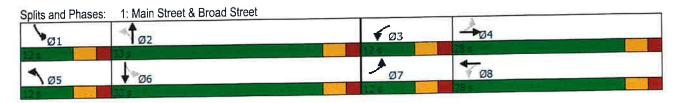
Splits and Phases: 1: Main Street & Broad Street

	۶	→	*	•	-	*	1	†	1	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1⇒		ሻ	f		7	ĵ») j	₽	
Traffic Volume (veh/h)	38	216	30	48	179	30	44	211	24	42	411	49
Future Volume (veh/h)	38	216	30	48	179	30	44	211	24	42	411	49
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1875	1675	1590	1695	1638	1695	1623	1680	1455	1766	1752	1794
Adj Flow Rate, veh/h	45	257	36	57	213	36	52	251	27	50	489	58
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Percent Heavy Veh, %	0	14	20	10	14	10	9	5	21	2	3	0
Cap, veh/h	420	466	65	363	455	77	222	537	58	423	550	65
Arrive On Green	0.04	0.32	0.31	0.05	0.33	0.32	0.05	0.36	0.35	0.05	0.36	0.34
Sat Flow, veh/h	1785	1438	201	1614	1366	231	1546	1490	160	1682	1537	182
Grp Volume(v), veh/h	45	0	293	57	0	249	52	0	278	50	0	547
Grp Sat Flow(s), veh/h/ln	1785	Ö	1639	1614	0	1597	1546	0	1651	1682	0	1719
	1.2	0.0	10.9	1.7	0.0	9.1	1.5	0.0	9.6	1.4	0.0	22.2
Q Serve(g_s), s	1.2	0.0	10.9	1.7	0.0	9.1	1.5	0.0	9.6	1.4	0.0	22.2
Cycle Q Clear(g_c), s	1.00	0.0	0.12	1.00	0.0	0.14	1.00		0.10	1.00		0.11
Prop In Lane	420	0	531	363	0	531	222	0	595	423	0	615
Lane Grp Cap(c), veh/h	0.11	0.00	0.55	0.16	0.00	0.47	0.23	0.00	0.47	0.12	0.00	0.89
V/C Ratio(X)	535	0.00	531	452	0.00	531	313	0	646	526	0	673
Avail Cap(c_a), veh/h	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
HCM Platoon Ratio	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Upstream Filter(I)	15.6	0.00	20.7	15.7	0.0	19.6	16.9	0.0	18.3	14.1	0.0	22.4
Uniform Delay (d), s/veh	0.1	0.0	4.1	0.2	0.0	2.9	0.5	0.0	0.6	0.1	0.0	13.1
Incr Delay (d2), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh			8.2	1.1	0.0	6.7	1.0	0.0	6.5	0.9	0.0	16.1
%ile BackOfQ(95%),veh/ln	0.9	0.0	0.2		0.0	0.1	1.0	0.0				
Unsig. Movement Delay, s/veh	45.7	0.0	040	15.9	0.0	22.5	17.4	0.0	18.8	14.2	0.0	35.5
LnGrp Delay(d),s/veh	15.7	0.0	24.8 C	13.9 B	Α	C C	В	A	В	В	Α	[
LnGrp LOS	В	A	C	D				330		-,=15-,0	597	
Approach Vol, veh/h		338	10,12		306		AND D	18.6		ONLINE BUILDING	33.8	
Approach Delay, s/veh		23.6		-	21.3 C	-		B		W. San F	C	
Approach LOS	100	C	100		- C					EM NO		
Timer - Assigned Phs	1	2	3	4	5	6	7_	8		10.00	SET SE	185.41
Phs Duration (G+Y+Rc), s	7.5	30.7	7.9	28.0	7.7	30.5	7.3	28.7		CLE JUL	100	
Change Period (Y+Rc), s	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0			-	S
Max Green Setting (Gmax), s	7.0	28.0	7.0	23.0	7.0	28.0	7.0	23.0	1 37 5	No.	and the same	
Max Q Clear Time (g_c+l1), s	3.9	11.6	4.2	12.9	4.0	24.2	3.7	11.1			-	
Green Ext Time (p_c), s	0.0	1.5	0.0	1.3	0.0	1.3	0.0	1.1	V.1 - 6/-			
Intersection Summary	well.		gin:	4,52	1,5"22	WE IS		16,77 (8)		V PO SA		
HCM 6th Ctrl Delay	114 01		26.0	177				100		4150		
HCM 6th LOS			С									

	1	\rightarrow	•	•	←	*	4	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBI
Lane Configurations	19	ĵ»		1	1 >		19	1		T		00
Traffic Volume (vph)	54		47	68		26	83	416	16	63		4
Future Volume (vph)	54	300	47	68	237	26	83	416	16	63	354	4
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	180
Lane Width (ft)	10	12	12	10	11	11	10	12	12	1000	11	100
Grade (%)	John W.	-2%	NAME OF	12-37	-1%	-		3%	12	10	1%	
Storage Length (ft)	280		0	100	170	0	100	0,0	0	0	1 70	26
Storage Lanes	1	200	0	1	F - 16	0	1	all the	0	1		20
Taper Length (ft)	25			25		U	25		U	25		-
Right Turn on Red	TITLE TO	A. TOTA	No	HICKS S	IF ALL PUR	No	20	and the same	No	25		Al
Link Speed (mph)		25			25	140	001310	25	140		25	N
Link Distance (ft)		581	EL SA	PO H	338	-	100	365				
Travel Time (s)		15.8		-	9.2		500 TO SEE	10.0			982	
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.00	26.8	0.00
Heavy Vehicles (%)	0%	8%	0%	0%	4%	4%	1%	2%		0.96	0.96	0.96
Shared Lane Traffic (%)	TE STATE OF	070	070	0 70	7 /0	4 /0	170	2%	0%	3%	1%	29
Turn Type	pm+pt	NA		pm+pt	NA			ALA.	-	A PERSON		
Protected Phases	7	4	The second	3	8		pm+pt 5	NA		pm+pt	NA	
Permitted Phases	4		_	8	0	ATT OF		2	Calvage	1	6	
Detector Phase	7	4	-	3	8		2 5			6	-	
Switch Phase		- I		J	0		5	2	0.37	1	6	
Minimum Initial (s)	3.0	11.0	-	3.0	11.0	-	20	40.0			10.0	
Minimum Split (s)	8.0	16.0		8.0	16.0		3.0	10.0		3.0	10.0	- 11
Total Split (s)	12.0	30.0		12.0	30.0		8.0	15.0		8.0	15.0	
Total Split (%)	14.1%	35.3%		14.1%	35.3%	MEL AL	12.0	31.0		12.0	31.0	
Yellow Time (s)	3.0	3.0	-11,-22	3.0	3.0		14.1%	36.5%		14.1%	36.5%	
All-Red Time (s)	2.0	2.0	11-11-11	2.0	2.0		3.0	3.0		3.0	3.0	
ost Time Adjust (s)	-1.0	-1.0	NIV.	-1.0	-1.0		2.0	2.0		2.0	2.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		-1.0	-1.0	200	-1.0	-1.0	
.ead/Lag	Lead	Lag				-	4.0	4.0		4.0	4.0	
ead-Lag Optimize?	Yes	Yes		Lead Yes	Lag Yes		Lead	Lag		Lead	Lag	
Recall Mode	None	Max	-00			-	Yes	Yes		Yes	Yes	
	None	IVIAX		None	Max		None	None		None	None	
ntersection Summary			S. PK	No.		ولأثرة		9(17)	XIX			
	Other		off.			3.35						
Cycle Length: 85												
ctuated Cycle Length: 77.1	0.017		20-7-2							7.37	Saver .	
atural Cycle: 60 control Type: Actuated-Unc												

2026 Base (No-Build)	۶	→	7	•	4-	1	1	†	1	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		7	\$		*	ĵ⇒		7	}	10
Traffic Volume (veh/h)	54	300	47	68	237	26	83	416	16	63	354	42
Future Volume (veh/h)	54	300	47	68	237	26	83	416	16	63	354	42
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1875	1761	1875	1837	1780	1780	1736	1722	1750	1752	1780	1766
Adj Flow Rate, veh/h	56	312	49	71	247	27	86	433	17	66	369	44
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	0	8	0	0	4	4	1	2	0	3	1	2
Cap, veh/h	468	528	83	393	574	63	292	507	20	256	462	55
Arrive On Green	0.05	0.36	0.34	0.06	0.36	0.35	0.07	0.31	0.29	0.06	0.30	0.28
Sat Flow, veh/h	1785	1485	233	1750	1577	172	1653	1645	65	1669	1561	186
	56	0	361	71	0	274	86	0	450	66	0	413
Grp Volume(v), veh/h	1785	0	1719	1750	0	1749	1653	0	1710	1669	0	1747
Grp Sat Flow(s),veh/h/ln	1.4	0.0	12.6	1.8	0.0	8.7	2.5	0.0	18.1	1.9	0.0	16.0
Q Serve(g_s), s	1.4	0.0	12.6	1.8	0.0	8.7	2.5	0.0	18.1	1.9	0.0	16.0
Cycle Q Clear(g_c), s		0.0	0.14	1.00	0.0	0.10	1.00	0.0	0.04	1.00		0.11
Prop In Lane	1.00	0	611	393	0	637	292	0	527	256	0	517
Lane Grp Cap(c), veh/h	468	0	0.59	0.18	0.00	0.43	0.29	0.00	0.85	0.26	0.00	0.80
V/C Ratio(X)	0.12	0.00	611	481	0.00	637	356	0.00	631	341	0	645
Avail Cap(c_a), veh/h	574	0		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
HCM Platoon Ratio	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Upstream Filter(I)	1.00	0.00	1.00		0.0	17.6	17.3	0.0	23.8	17.9	0.0	23.8
Uniform Delay (d), s/veh	13.8	0.0	19.3	14.1		2.1	0.6	0.0	9.6	0.5	0.0	5.7
Incr Delay (d2), s/veh	0.1	0.0	4.2	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0		1.7	0.0	13.1	1.4	0.0	11.5
%ile BackOfQ(95%),veh/ln	1.0	0.0	9.3	1.3	0.0	6.7	1./	0.0	10.1	1.7	0.0	11.0
Unsig. Movement Delay, s/veh					0.0	40.7	47.0	0.0	33.4	18.4	0.0	29.5
LnGrp Delay(d),s/veh	13.9	0.0	23.5	14.4	0.0	19.7	17.8	Α	33.4 C	В	A	C
LnGrp LOS	В	A	С	В	A	В	В		U		479	
Approach Vol, veh/h		417			345			536			27.9	
Approach Delay, s/veh		22.2			18.6			30.9	-		21.9 C	-
Approach LOS		С		4-7	В			С			U	
Timer - Assigned Phs		2	3	4	5	6	7	8			TIEST, IN	
Phs Duration (G+Y+Rc), s	8.3	26.5	8.3	30.0	9.2	25.7	7.7	30.6				
Change Period (Y+Rc), s	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	26.0	7.0	25.0	7.0	26.0	7.0	25.0		1.884	Ultra i si	
Max Q Clear Time (g_c+l1), s	4.4	20.1	4.3	14.6	5.0	18.0	3.9	10.7				
Green Ext Time (p_c), s	0.0	1.5	0.0	1.7	0.0	1.7	0.0	1.4		The	5/11/5-01	
Intersection Summary				ZATIO.		la viv	d dina			HSE		
HCM 6th Ctrl Delay			25.7			No.	1100		1			
HCM 6th LOS			С									

2026 Projected (Build) Conditions


	۶	-	*	•	←	•	4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	B		7	₽.		7	1₃		ሻ	Þ	
Traffic Volume (veh/h)	54	300	47	68	237	26	83	416	16	63	354	4:
Future Volume (veh/h)	54	300	47	68	237	26	83	416	16	63	354	4:
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	الطاقي
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Work Zone On Approach		No			No			No		MANAGE CO.	No	
Adj Sat Flow, veh/h/ln	1875	1761	1875	1837	1780	1780	1736	1722	1750	1752	1780	1760
Adj Flow Rate, veh/h	56	312	49	71	247	27	86	433	17	66	369	4
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	0	8	0	0	4	4	1	2	0	3	1	
Cap, veh/h	468	528	83	393	574	63	292	507	20	256	462	5
Arrive On Green	0.05	0.36	0.34	0.06	0.36	0.35	0.07	0.31	0.29	0.06	0.30	0.2
Sat Flow, veh/h	1785	1485	233	1750	1577	172	1653	1645	65	1669	1561	18
Grp Volume(v), veh/h	56	0	361	71	0	274	86	0	450	66	0	413
Grp Sat Flow(s), veh/h/ln	1785	0	1719	1750	0	1749	1653	0	1710	1669	0	174
Q Serve(g_s), s	1.4	0.0	12.6	1.8	0.0	8.7	2.5	0.0	18.1	1.9	0.0	16.0
Cycle Q Clear(g_c), s	1.4	0.0	12.6	1.8	0.0	8.7	2.5	0.0	18.1	1.9	0.0	16.
Prop In Lane	1.00		0.14	1.00		0.10	1.00		0.04	1.00	*	0.1
Lane Grp Cap(c), veh/h	468	0	611	393	0	637	292	0	527	256	0	51
V/C Ratio(X)	0.12	0.00	0.59	0.18	0.00	0.43	0.29	0.00	0.85	0.26	0.00	0.8
Avail Cap(c_a), veh/h	574	0	611	481	0	637	356	. 0	631	341	0	64
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.0
Uniform Delay (d), s/veh	13.8	0.0	19.3	14.1	0.0	17.6	17.3	0.0	23.8	17.9	0.0	23.
Incr Delay (d2), s/veh	0.1	0.0	4.2	0.2	0.0	2.1	0.6	0.0	9.6	0.5	0.0	5.
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
%ile BackOfQ(95%),veh/ln	1.0	0.0	9.3	1.3	0.0	6.7	1.7	0.0	13.1	1.4	0.0	11.
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	13.9	0.0	23.5	14.4	0.0	19.7	17.8	0.0	33.4	18.4	0.0	29.
LnGrp LOS	В	Α	С	В	Α	В	В	Α	С	В	Α	(
Approach Vol, veh/h	11/12	417			345			536			479	
Approach Delay, s/veh		22.2			18.6			30.9			27.9	
Approach LOS	المرام	С			В			С	-		C	H
Timer - Assigned Phs	1	2	3	4	5	6	7	8		بعبتين		
Phs Duration (G+Y+Rc), s	8.3	26.5	8.3	30.0	9.2	25.7	7.7	30.6		2 21	-	3114
Change Period (Y+Rc), s	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0				-
Max Green Setting (Gmax), s	7.0	26.0	7.0	25.0	7.0	26.0	7.0	25.0		1-6	W-1	
Max Q Clear Time (g_c+l1), s	4.4	20.1	4.3	14.6	5.0	18.0	3.9	10.7				
Green Ext Time (p_c), s	0.0	1.5	0.0	1.7	0.0	1.7	0.0	1.4				
Intersection Summary			. 448		ALEA.				13523		figure 1, si	HW
HCM 6th Ctrl Delay			25.7			12.55		100	371	70.5		
HCM 6th LOS			С									

2026 Projected (Build) Conditions

2020 1 Tojected (E	٠	→	*	1	-	1	1	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1>		7	^		7		(arrar)	7	7>	11218
Traffic Volume (vph)	38	216	30	48	179	30	44	212	24	42	412	50
Future Volume (vph)	38	216	30	48	179	30	44	212	24	42	412	50
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	10	12	12	10	11	11	10	12	12	10	11	11
Grade (%)		-2%			-1%			3%	5755		1%	
Storage Length (ft)	280		0	100		0	100		0	0	-	0
Storage Lanes	1		0	1		0	1		0	1		0
Taper Length (ft)	25			25			25		11/0	25	_	100,000
Right Turn on Red		STE I	No			No		and the same	No	22.00		No
Link Speed (mph)		25			25			25			25	
Link Distance (ft)		581			338			365		7	187	
Travel Time (s)		15.8			9.2			10.0			5.1	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles (%)	0%	14%	20%	10%	14%	10%	9%	5%	21%	2%	3%	0%
Shared Lane Traffic (%)	ALDER SE					N. O.						
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8		5	2		- 1	6	
Permitted Phases	4			8			2			6		
Detector Phase	7	4		3	8	100 E	5	2		1	6	
Switch Phase											10.0	
Minimum Initial (s)	3.0	11.0		3.0	11.0		3.0	10.0	100	3.0	10.0	-
Minimum Split (s)	8.0	16.0		8.0	16.0		8.0	15.0		8.0	15.0	
Total Split (s)	12.0	28.0		12.0	28.0		12.0	33.0	N	12.0	33.0	73-5
Total Split (%)	14.1%	32.9%		14.1%	32.9%		14.1%	38.8%		14.1%	38.8%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	-
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0	5.0	-1.0	-1.0		-1.0	-1.0		-1.0	-1.0	7
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	No.	Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		None	Max		None	None		None	None	ACC
Intersection Summary	THE TOTAL				ADE				والجراد	7.65		25 16
Area Type:	Other	100			100	Liver He		10.00		200	A	بليات

Cycle Length: 85 Actuated Cycle Length: 74.5 Natural Cycle: 60

Total Tojected (Bull		Hallion							iing rian.	Weekday	y A.IVI. Pe	ак пои
	۶	→	*	1	-	•	1	1	1	-	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	B		14	f >		7	₽		7	1>	
Traffic Volume (veh/h)	38	216	30	48	179	30	44	212	24	42	412	50
Future Volume (veh/h)	38	216	30	48	179	30	44	212	24	42	412	50
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00	-	1.00	1.00		1.00	1.00	U	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No	1.00	1.00	No	1.00
Adj Sat Flow, veh/h/ln	1875	1675	1590	1695	1638	1695	1623	1680	1455	1766	1752	1794
Adj Flow Rate, veh/h	45	257	36	57	213	36	52	252	27	50	490	
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	60
Percent Heavy Veh, %	0	14	20	10	14	10	9	5	21	2	- Particular Particular	0.84
Cap, veh/h	419	465	65	362	454	77	221	539	58	424	3	0
Arrive On Green	0.04	0.32	0.31	0.05	0.33	0.32	0.05	0.36	0.35	0.05	550	67
Sat Flow, veh/h	1785	1438	201	1614	1366	231	1546	1491	160	The second secon	0.36	0.35
Grp Volume(v), veh/h	45	0	293	57	0	249	52			1682	1531	187
Grp Sat Flow(s), veh/h/ln	1785	0	1639	1614	0	1597	1546	0	279	50	0	550
Q Serve(g_s), s	1.2	0.0	10.9	1.7	0.0	9.2		0	1651	1682	0	1719
Cycle Q Clear(g_c), s	1.2	0.0	10.9	1.7	0.0	9.2	1.5	0.0	9.7	1.4	0.0	22.4
Prop In Lane	1.00	0.0	0.12	1.00	0.0	0.14	1.5	0.0	9.7	1.4	0.0	22.4
Lane Grp Cap(c), veh/h	419	0	530	362	0	530	1.00		0.10	1.00	-	0.11
V/C Ratio(X)	0.11	0.00	0.55	0.16	0.00		221	0	597	424	0	617
Avail Cap(c_a), veh/h	533	0.00	530	451	0.00	0.47	0.24	0.00	0.47	0.12	0.00	0.89
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	530	311	0	645	526	0	671
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	15.7	0.00	20.8	15.8	-	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Incr Delay (d2), s/veh	0.1	0.0	4.1	0.2	0.0	19.7	16.9	0.0	18.3	14.1	0.0	22.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.2	0.0	3.0	0.5	0.0	0.6	0.1	0.0	13.4
%ile BackOfQ(95%),veh/ln	0.9	0.0	8.2	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh	0.0	0.0	0.2	1.1	0.0	6.7	1.0	0.0	6.5	0.9	0.0	16.3
LnGrp Delay(d),s/veh	15.8	0.0	24.9	16.0	0.0	00.0	47 -					
LnGrp LOS	В	Α	C C	10.0 B	0.0	22.6	17.5	0.0	18.8	14.2	0.0	35.9
Approach Vol, veh/h		338			A	С	В	A	В	В	A	D
Approach Delay, s/veh					306			331			600	
Approach LOS	1	23.7 C			21.4			18.6			34.1	
		U		H H	С		1.10	В			C	100
Timer - Assigned Phs	4-1	2	3	4	5	6	7	8	N. C.		C	
Phs Duration (G+Y+Rc), s	7.5	30.8	7.9	28.0	7.7	30.7	7.3	28.7			-	
Change Period (Y+Rc), s	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	-		4	
Max Green Setting (Gmax), s	7.0	28.0	7.0	23.0	7.0	28.0	7.0	23.0			W.D.	50/11/
Max Q Clear Time (g_c+l1), s	3.9	11.7	4.2	12.9	4.0	24.4	3.7	11.2				
Green Ext Time (p_c), s	0.0	1.5	0.0	1.3	0.0	1.3	0.0	1.1				X
ntersection Summary		SME		N - Car		Section 1		1000			NAC PARTY	
-ICM 6th Ctrl Delay		distant.	26.1	100								
HCM 6th LOS			C	-				-				4
			-									

	1	-	*	1	4		1	†	*	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1	A. C.	'n	1>		7	B		ሻ		
Traffic Volume (vph)	38	216	30	48	179	30	44	212	24	42	412	50
Future Volume (vph)	38	216	30	48	179	30	44	212	24	42	412	50
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	10	12	12	10	11	11	10	12	12	10	11	11
Grade (%)		-2%			-1%			3%	100	X I	1%	-11/1
Storage Length (ft)	280		0	100		0	100		0	0		0
Storage Lanes		A 1 1 1	0	1		0	1		0	1	W-60 17	0
Taper Length (ft)	25			25			25			25		
Right Turn on Red	THE REAL PROPERTY.	Carl Sept	No			No			No			No
Link Speed (mph)		25			25			25			25	
Link Distance (ft)		581	Tier Co		338			365	1 2 3	1	187	-
Travel Time (s)	10-0-0-	15.8			9.2			10.0			5.1	2.24
Peak Hour Factor	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Heavy Vehicles (%)	0%	14%	20%	10%	14%	10%	9%	5%	21%	2%	3%	0%
Shared Lane Traffic (%)			- "									
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8	IAV SEL	5	2		1	6	1 3 2
Permitted Phases	4			8			2			6		
Detector Phase	7	4		3	8		5	2	E LUNG	1	6	11 34
Switch Phase										92.92.0	9802	
Minimum Initial (s)	3.0	11.0		3.0	11.0	India,	3.0	10.0	100	3.0	10.0	
Minimum Split (s)	8.0	16.0		8.0	16.0		8.0	15.0		8.0	15.0	
Total Split (s)	12.0	28.0		12.0	28.0	"LEV	12.0	33.0	1010	12.0	33.0	
Total Split (%)	14.1%	32.9%		14.1%	32.9%		14.1%	38.8%		14.1%	38.8%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0		-1.0	-1.0	1000	-1.0	-1.0		-1.0	-1.0	
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag		Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max	Swit.	None	Max		None	None		None	None	(10,0X)
	**************************************	V	-	1000	U.S. III	SUPPLIES TO STATE OF						

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 74.5

Natural Cycle: 60

	•		$\overline{}$		+	4	4	4		vveekuay 1	1	J
Mayamant			*	*	Vocation		7	I		*	+	*
Movement Lane Configurations	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (veh/h)	75	^	00	7	4		ሻ	f)		19	₽.	
Future Volume (veh/h)	38	216	30	48	179	30	44	212	24	42	412	50
Initial Q (Qb), veh	38	216	30	48	179	30	44	212	24	42	412	50
Ped-Bike Adj(A_pbT)	0	0	0	0	0	0	0	0	0	0	0	0
Parking Bus, Adj	1.00	4.00	1.00	1.00		1.00	1.00		1.00	1.00		1.00
Work Zone On Approach	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1075	No	4500	4005	No			No			No	
Adj Flow Rate, veh/h	1875	1675	1590	1695	1638	1695	1623	1680	1455	1766	1752	1794
Peak Hour Factor	45	257	36	57	213	36	52	252	27	50	490	60
Percent Heavy Veh, %	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84	0.84
Cap, veh/h	0	14	20	10	14	10	9	5	21	2	3	0
Arrive On Green	419	465	65	362	454	77	221	539	58	424	550	67
Sat Flow, veh/h	0.04	0.32	0.31	0.05	0.33	0.32	0.05	0.36	0.35	0.05	0.36	0.35
	1785	1438	201	1614	1366	231	1546	1491	160	1682	1531	187
Grp Volume(v), veh/h	45	0	293	57	0	249	52	0	279	50	0	550
Grp Sat Flow(s),veh/h/ln	1785	0	1639	1614	0	1597	1546	0	1651	1682	0	1719
Q Serve(g_s), s	1.2	0.0	10.9	1.7	0.0	9.2	1.5	0.0	9.7	1.4	0.0	22.4
Cycle Q Clear(g_c), s	1.2	0.0	10.9	1.7	0.0	9.2	1.5	0.0	9.7	1.4	0.0	22.4
Prop In Lane	1.00		0.12	1.00		0.14	1.00		0.10	1.00		0.11
Lane Grp Cap(c), veh/h V/C Ratio(X)	419	0	530	362	0	530	221	0	597	424	0	617
Avail Cap(c_a), veh/h	0.11	0.00	0.55	0.16	0.00	0.47	0.24	0.00	0.47	0.12	0.00	0.89
HCM Platoon Ratio	533	0	530	451	0	530	311	0	645	526	0	671
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh Incr Delay (d2), s/veh	15.7	0.0	20.8	15.8	0.0	19.7	16.9	0.0	18.3	14.1	0.0	22.5
	0.1	0.0	4.1	0.2	0.0	3.0	0.5	0.0	0.6	0.1	0.0	13.4
nitial Q Delay(d3),s/veh %ile BackOfQ(95%),veh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Unsig. Movement Delay, s/veh	0.9	0.0	8.2	1.1	0.0	6.7	1.0	0.0	6.5	0.9	0.0	16.3
_nGrp Delay(d),s/veh		0.0	04.0									
_nGrp LOS	15.8	0.0	24.9	16.0	0.0	22.6	17.5	0.0	18.8	14.2	0.0	35.9
	В	A	С	В	Α	С	В	A	В	В	Α	D
Approach Vol, veh/h		338		A POLICE	306			331			600	
Approach Delay, s/veh		23.7			21.4			18.6			34.1	
Approach LOS		С			С			В			C	
imer - Assigned Phs	1	2	3	4	5	6	7	8	0.5			HE WAY
Phs Duration (G+Y+Rc), s	7.5	30.8	7.9	28.0	7.7	30.7	7.3	28.7			100	
Change Period (Y+Rc), s	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0			27 11 210	
Max Green Setting (Gmax), s	7.0	28.0	7.0	23.0	7.0	28.0	7.0	23.0	(E) FRED	JWH	C. III. 18	
Max Q Clear Time (g_c+l1), s	3.9	11.7	4.2	12.9	4.0	24.4	3.7	11.2	-			
Green Ext Time (p_c), s	0.0	1.5	0.0	1.3	0.0	1.3	0.0	1.1	1.3			
ntersection Summary			VO S.	SS LIE		al (Ex)	W1 7 2	Sales and a	17.365			
ICM 6th Ctrl Delay			26.1	a Ruji u	100		- 20					
ICM 6th LOS			C				W					

,	1	4	†	-	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		1			414
Traffic Volume (vph)	2	1	279	1	0	502
Future Volume (vph)	2	1	279	1	0	502
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	10	10	10	11
Grade (%)	0%		-1%			1%
Link Speed (mph)	25		25			25
Link Distance (ft)	200	(4,50	187			130
Travel Time (s)	5.5		5.1			3.5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	5%	2%	2%	2%
Shared Lane Traffic (%)	Table 18					
Sign Control	Stop		Free			Free
Intersection Summary	Sail of			168	Sec. 1	
Area Type:	Other					
Control Type: Unsignalized			Harrie .	1100710		

Lanes, Volumes, Timings TPD

Intersection	400			**************************************	The second	I Carried
Int Delay, s/veh	0	12/w				Water
			1.000			
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		B			414
Traffic Vol, veh/h	2		279	1	0	502
Future Vol., veh/h	2	1	279	1	0	502
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized		None		None		None
Storage Length	0	•	-	-		
Veh in Median Storage	,# 0	1112	0		100	0
Grade, %	0	-	-1	-		1
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	5	2	2	2
Mvmt Flow	2	- 1	310	100 (4)	0	558
Major/Minor	Minor1	S (B)	Anions	30 T T	lata-0	E INCOM
			//ajor1		lajor2	
Conflicting Flow All	590	311	0	0	311	0
Stage 1	311		e II, ac		Service Services	1
Stage 2	279	-				2
Critical Hdwy	6.4	6.23			4.3	3 16
Critical Hdwy Stg 1	5.43	1.5		0 ₩ 0	-	A
Critical Hdwy Stg 2	5.83	5.02		F Com		
Follow-up Hdwy	3	3.1		(* (3	V#5
Pot Cap-1 Maneuver	532	773		N. Call	940	Delivery
Stage 1	852					5 - 40
Stage 2	856	-1 47		77.	G E.F	
Platoon blocked, %			-		SIGN.	
Mov Cap-1 Maneuver	532	773			940	N.C.
Mov Cap-2 Maneuver	532			1 1 2 2 2 2		
Stage 1	852		•		**	3.00
			111.5	150		
Stage 2	856	-	3.71	2		(*)
	MEST.			551		
Approach	WB	Ale.	NB		SB	
HCM Control Delay, s	11.1		0	THE RE	0	7 1 2
HCM LOS	В			-1-1-	J	
THE REAL PROPERTY.	- T-		-	17.5		
The state of the s			VIII	200		
Minor Lane/Major Mymt		NBT	NBRW		SBL	SBT
Capacity (veh/h)		100	596	594	940	() E
HCM Lane V/C Ratio		7.		0.006	-	-
HCM Control Delay (s)		75	Yes	11.1	0	
HCM Lane LOS		-		В	Α	-
HCM 95th %tile Q(veh)		7.5		0	0	

	•	4	†	-	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	KA		1>			41
Traffic Volume (vph)	2	1	279	1	0	502
Future Volume (vph)	2	1	279	1	0	502
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	10	10	10	11
Grade (%)	0%		-1%			1%
Link Speed (mph)	25		25			25
Link Distance (ft)	200		187			130
Travel Time (s)	5.5		5.1			3.5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	5%	2%	2%	2%
Shared Lane Traffic (%)						
Sign Control	Stop		Free			Free
Intersection Summary	n, jedn					10
Area Type:	Other					
Control Type: Unsignalized						

Intersection	NAME OF STREET	W he	N I'm	A. 4	1000	
Int Delay, s/veh	0					-
		Who	***		The same	
Movement	WBL	WBR	150000000	NBR	SBL	SBT
Lane Configurations	*		B			41
Traffic Vol, veh/h	2		279	1	0	502
Future Vol, veh/h	2	1	279	1	0	502
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- 1	None	11 2	None		None
Storage Length	0			•	-	
Veh in Median Storage	,# 0		0		100	0
Grade, %	0		-1			1
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	5	2	2	2
Mymt Flow	2	1	310	1	0	558
		117/16	0.0	7.50	U	000
	Minor1		Major1	, A	Major2	1100
Conflicting Flow All	590	311	0	0	311	0
Stage 1	311	٠				
Stage 2	279	-	-			327
Critical Hdwy	6.4	6.23	2 %	181	4.3	-
Critical Hdwy Stg 1	5.43	-	-	(4)		-
Critical Hdwy Stg 2	5.83	4 -		-	7. 99	
Follow-up Hdwy	3	3.1		-	3	
Pot Cap-1 Maneuver	532	773		TENER P	940	
Stage 1	852	_	-	-	-	-
Stage 2	856	T. III	-	3 207	77.3	150
Platoon blocked, %	000	- 5-15-5			i i i i i	
Mov Cap-1 Maneuver	532	773			940	-
Mov Cap-2 Maneuver	532	_			-	100
		-			(*)	*
Stage 1	852		187		(#1)	
Stage 2	856	-	-7.1	75	* 2	
EL Williams A		M	100		35	
Approach	WB	1.5	NB	***	SB	
ICM Control Delay, s	11.1		0		0	
ICM LOS	В				U	
THE RESERVE OF	414		-	-	-	_
Water than the same	Sime f					
/linor Lane/Major Mvmt	ETRYA.	NBT	NBRW		SBL	SBT
Capacity (veh/h)		2.7		594	940	25
ICM Lana VIIC Datia		: e	- (0.006	-	(#:
ICM Lane V/C Ratio				11.1	0	
ICM Control Delay (s)				11,1		
ICM Control Delay (s) ICM Lane LOS						
ICM Control Delay (s)				B 0	A 0	

*	→	*	1	←	•	4	†	1	-	Ţ	4
FBI	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
						1	B			B	
		47		237	26	83	417	16			42
				237	26	83	417				42
				1800	1800	1800	1800				1800
				11	11	10	12	12	10		11
		100	La Sal	-1%		STATE.	3%			1%	
280		0	100		0	100		0	0		0
			1		0	1		0		1	0
		-	25			25			25		
	154312	No	CONTRACTOR OF THE PARTY		No			No			No
	25			25			25				
		V 175	9,417	338		All lives	365				
				9.2			10.0				
0.96		0.96	0.96	0.96	0.96	0.96					0.96
-			0%	4%	4%	1%	2%	0%	3%	1%	2%
	OVER 1		MIN						1000		
pm+pt	NA		pm+pt	NA		pm+pt			pm+pt		
7	4	100	3	8		5	2		1	6	
4			8						_	727	
7	4	TO WE	3	8		5	2		100	6	-4-
100									1000	1232 20	
3.0	11.0		3.0	11.0		3.0		100			my spi
	16.0		8.0	16.0							
	30.0		12.0	30.0							
	35.3%		14.1%	35.3%							-
The state of the s	120211111111111111111111111111111111111	75	3.0	3.0							
	2.0		2.0	2.0		2.0					
	-1.0	211.9	-1.0	-1.0		-1.0		100			
4.0	4.0		4.0	4.0		4.0			The second secon	1,111	
Lead	Lag		Lead	Lag		Lead					
Control of the last of the las	Yes		Yes	Yes		Yes	17 17-200				
None	Max		None	Max		None	None		None	None	
	55 55 1800 10 280 1 25 0.96 0% pm+pt 7 4 7 3.0 8.0 12.0 14.1% 3.0 2.0 4.0 4.0 Lead Yes	EBL EBT 55 300 55 300 1800 1800 10 12 -2% 280 1 25 25 581 15.8 0.96 0.96 0% 8% pm+pt NA 7 4 4 7 4 3.0 11.0 8.0 16.0 12.0 30.0 14.1% 35.3% 3.0 2.0 2.0 -1.0 -1.0 4.0 4.0 Lead Lag Yes Yes	EBL EBT EBR 55 300 47 55 300 47 1800 1800 1800 10 12 12 -2% 280 0 1 0 25 No 25 581 15.8 0.96 0.96 0.96 0% 8% 0% pm+pt NA 7 4 4 7 4 3.0 11.0 8.0 16.0 12.0 30.0 14.1% 35.3% 3.0 3.0 2.0 2.0 -1.0 -1.0 4.0 4.0 Lead Lag Yes Yes	EBL EBT EBR WBL 55 300 47 68 55 300 47 68 1800 1800 1800 1800 10 12 12 10 -2% 280 0 100 1 0 1 25 25 No 25 581 15.8 0.96 0.96 0.96 0.96 0% 8% 0% 0% pm+pt NA pm+pt 7 4 3 4 8 7 4 3 3.0 11.0 3.0 8.0 16.0 8.0 12.0 30.0 12.0 14.1% 35.3% 14.1% 3.0 3.0 3.0 3.0 2.0 2.0 2.0 -1.0 -1.0 -1.0 4.0 4.0 4.0 Lead Lag Lead Yes Yes Yes	EBL EBT EBR WBL WBT 55 300 47 68 237 55 300 47 68 237 1800 1800 1800 1800 1800 10 12 12 10 11 280 0 100 1 25 25 25 25 No 25 25 No 25 25 15.8 9.2 0.96 0.96 0.96 0.96 0% 8% 0% 0% 4% pm+pt NA pm+pt NA NA pm+pt NA pm+pt NA NA 3 8 8 3 8 3 14.0 3 8 3 14.0 3 3 8 3 14.1 35.3% 3 3 3 3.0 3.0 3.0<	BBL BBT BBR WBL WBT WBR S55 300 47 68 237 26 25 300 47 68 237 26 26 27 26 27 26 27 27	EBL EBT EBR WBL WBT WBR NBL 55 300 47 68 237 26 83 1800 1800 1800 1800 1800 1800 1800 10 12 12 10 11 11 10 280 0 100 0 100 1 0 1 0 1 25 25 25 81 338 338 15.8 9.2 0.96 0.96 0.96 0.96 0.96 0% 8% 0% 0% 4% 4% 1% pm+pt NA pm+pt NA pm+pt 5 4 3 8 5 5 3.0 11.0 3.0 11.0 3.0 8.0 16.0 8.0 16.0 8.0 12.0 30.0 12.0 30.0 12.0	EBL EBT EBR WBL WBT WBR NBL NBT 55 300 47 68 237 26 83 417 55 300 47 68 237 26 83 417 1800 1800 1800 1800 1800 1800 1800 1800 10 12 12 10 11 11 10 12 280 0 100 0 100 0 100 1 0 1 0 1 25 25 8 25 25 25 25 881 338 365 365 15.8 9.2 10.0 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0% 8% 0% 0% 4% 4% 1% 2% pm+pt NA pm+pt NA pm+pt NA <t< td=""><td>EBL EBT EBR WBL WBT WBR NBL NBT NBR 55 300 47 68 237 26 83 417 16 55 300 47 68 237 26 83 417 16 1800 1800 1800 1800 1800 1800 1800 1800 10 12 12 10 11 11 10 12 12 280 0 100 0 100 0 0 0 0 25 25 25 25 25 25 25 25 581 338 365 10.0 0</td><td> EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL </td><td> FBL FBT FBR WBL WBT WBR NBL NBT NBR SBL SBT </td></t<>	EBL EBT EBR WBL WBT WBR NBL NBT NBR 55 300 47 68 237 26 83 417 16 55 300 47 68 237 26 83 417 16 1800 1800 1800 1800 1800 1800 1800 1800 10 12 12 10 11 11 10 12 12 280 0 100 0 100 0 0 0 0 25 25 25 25 25 25 25 25 581 338 365 10.0 0	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL	FBL FBT FBR WBL WBT WBR NBL NBT NBR SBL SBT

Intersection Summary

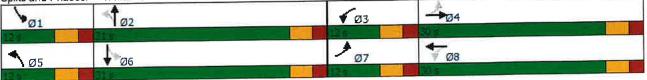
Other

Area Type: C Cycle Length: 85 Actuated Cycle Length: 77.1

Natural Cycle: 60

	-							- 1111	iiig i iaii.	Weekua	weekday P.M. Pea			
	۶	-	*	•	—	*	1	†	-	1	Ţ	1		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Lane Configurations	ሻ	1>		Ť	1		7	7		*	†	ODI		
Traffic Volume (veh/h)	55	300	47	68	237	26	83	417	16	63	355	42		
Future Volume (veh/h)	55	300	47	68	237	26	83	417	16	63	355	42		
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0		
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00	0	1.00		
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Work Zone On Approach		No			No			No	1.00	1.00	No	1.00		
Adj Sat Flow, veh/h/ln	1875	1761	1875	1837	1780	1780	1736	1722	1750	1752	1780	1766		
Adj Flow Rate, veh/h	57	312	49	71	247	27	86	434	17	66	370	44		
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96		
Percent Heavy Veh, %	0	8	0	0	4	4	1	2	0.30	3	1	0.90		
Cap, veh/h	468	528	83	392	573	63	292	508	20	256	463	55		
Arrive On Green	0.05	0.36	0.34	0.06	0.36	0.35	0.07	0.31	0.29	0.06	0.30	0.28		
Sat Flow, veh/h	1785	1485	233	1750	1577	172	1653	1646	64	1669	1561	186		
Grp Volume(v), veh/h	57	0	361	71	0	274	86	0	451	66	0	414		
Grp Sat Flow(s), veh/h/ln	1785	0	1719	1750	0	1749	1653	0	1710	1669	0			
Q Serve(g_s), s	1.4	0.0	12.6	1.8	0.0	8.7	2.5	0.0	18.1	1.9	0.0	1747 16.0		
Cycle Q Clear(g_c), s	1.4	0.0	12.6	1.8	0.0	8.7	2.5	0.0	18.1	1.9	0.0	16.0		
Prop In Lane	1.00		0.14	1.00	0.0	0.10	1.00	0.0	0.04	1.00	0.0	0.11		
Lane Grp Cap(c), veh/h	468	0	610	392	0	636	292	0	528	256	0	518		
V/C Ratio(X)	0.12	0.00	0.59	0.18	0.00	0.43	0.29	0.00	0.85	0.26	0.00	0.80		
Avail Cap(c_a), veh/h	572	0	610	480	0	636	355	0.00	631	340	0.00	644		
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Jpstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	Street, Square and Squ		
Jniform Delay (d), s/veh	13.8	0.0	19.3	14.2	0.0	17.6	17.3	0.0	23.8	17.9	0.00	1.00		
ncr Delay (d2), s/veh	0.1	0.0	4.2	0.2	0.0	2.1	0.6	0.0	9.7	0.5	0.0	5.7		
nitial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
%ile BackOfQ(95%),veh/ln	1.0	0.0	9.4	1.3	0.0	6.7	1.7	0.0	13.2	1.4	0.0	11.5		
Insig. Movement Delay, s/veh								0.0	10,2	1.7	0.0	11.5		
.nGrp Delay(d),s/veh	13.9	0.0	23.5	14.4	0.0	19.8	17.8	0.0	33.4	18.4	0.0	29.5		
nGrp LOS	В	Α	С	В	Α	В	В	A	C	В	Α	29.5 C		
pproach Vol, veh/h	THE .	418	17 37	- N	345	1 1 2 2 1	100	537	10.1		480			
Approach Delay, s/veh		22.2			18.7			30.9		30-01-fm		-		
Approach LOS	- 1000	С	JALK.		В	" TITE	SE US	C	N. T. V	QUEI SE	28.0 C	0.0		
imer - Assigned Phs		2	3	4	5	6	7	8		Series 1				
hs Duration (G+Y+Rc), s	8.3	26.6	8.3	30.0	9.2	25.7					Maria N			
Change Period (Y+Rc), s	5.0	5.0	5.0	5.0	5.0	5.0	7.7	30.6	40					
Max Green Setting (Gmax), s	7.0	26.0	7.0	25.0	7.0	26.0	5.0	5.0	-	-				
fax Q Clear Time (g_c+l1), s	4.4	20.1	4.3	14.6	5.0	18.0	7.0	25.0			The second			
Freen Ext Time (p_c), s	0.0	1.5	0.0	1.7	0.0	1.6	3.9	10.7	-		_	Townson I		
ntersection Summary			STEE ALL		0.0	1.0	0.0	1.4			Part I			
CM 6th Ctrl Delay	W 1	-	25.7					No.						
CM 6th LOS			25.7 C	Text Is	01		100		7	ALTERNA				
3 5			U											

	*	→	*	•	-	*	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	₽	200000000000000000000000000000000000000	ሻ	Þ		7	7		7	B	
Traffic Volume (vph)	55	300	47	68	237	26	83	417	16	63	355	42
Future Volume (vph)	55	300	47	68	237	26	83	417	16	63	355	42
ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Width (ft)	10	12	12	10	11	11	10	12	12	10	11	11
Grade (%)		-2%		1.07	-1%			3%	N. I		1%	
Storage Length (ft)	280		0	100		0	100		0	0		0
Storage Lanes	THE REAL PROPERTY.	To Saline	0	1		0	1		0	1		0
Taper Length (ft)	25			25			25			25		225011
Right Turn on Red			No			No			No			No
Link Speed (mph)		25			25			25			25	
Link Distance (ft)	85 724	581		المحاد	338			365			187	
Travel Time (s)		15.8			9.2			10.0			5.1	12722
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	0%	8%	0%	0%	4%	4%	1%	2%	0%	3%	1%	2%
Shared Lane Traffic (%)	No.											
Turn Type	pm+pt	NA		pm+pt	NA		pm+pt	NA		pm+pt	NA	
Protected Phases	7	4		3	8	State 1	5	2			6	
Permitted Phases	4			8			2			6		
Detector Phase	7	4		3	8		5	2		1	6	
Switch Phase											72.2	
Minimum Initial (s)	3.0	11.0		3.0	11.0		3.0	10.0		3.0	10.0	-12
Minimum Split (s)	8.0	16.0		8.0	16.0		8.0	15.0		8.0	15.0	
Total Split (s)	12.0	30.0		12.0	30.0	200	12.0	31.0		12.0	31.0	
Total Split (%)	14.1%	35.3%		14.1%	35.3%		14.1%	36.5%		14.1%	36.5%	
Yellow Time (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)	-1.0	-1.0	THE PA	-1.0	-1.0		-1.0	-1.0		-1.0	-1.0	- 112-
Total Lost Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
Lead/Lag	Lead	Lag	13-16	Lead	Lag		Lead	Lag		Lead	Lag	
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes	Yes	
Recall Mode	None	Max		None	Max		None	None		None	None	


Intersection Summary

Area Type: Other

Cycle Length: 85
Actuated Cycle Length: 77.1

Natural Cycle: 60

							Titting Flant Weekday I			1 ,IVI, 1 C	ait Houl	
	۶	→	\rightarrow	1	←	1	4	†	1	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	T	- ↑		*	1>		7	1	LINE YOUR	ሻ	f	
Traffic Volume (veh/h)	55	300	47	68	237	26	83	417	16	63	355	42
Future Volume (veh/h)	55	300	47	68	237	26	83	417	16	63	355	42
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	12
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No		1.00	No	1.00
Adj Sat Flow, veh/h/ln	1875	1761	1875	1837	1780	1780	1736	1722	1750	1752	1780	1766
Adj Flow Rate, veh/h	57	312	49	71	247	27	86	434	17	66	370	44
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	0	8	0	0	4	4	1	2	0.00	3	1	2
Cap, veh/h	468	528	83	392	573	63	292	508	20	256	463	55
Arrive On Green	0.05	0.36	0.34	0.06	0.36	0.35	0.07	0.31	0.29	0.06	0.30	0.28
Sat Flow, veh/h	1785	1485	233	1750	1577	172	1653	1646	64	1669	1561	186
Grp Volume(v), veh/h	57	0	361	71	0	274	86	0	451	66	0	414
Grp Sat Flow(s), veh/h/ln	1785	0	1719	1750	0	1749	1653	0	1710	1669	0	
Q Serve(g_s), s	1.4	0.0	12.6	1.8	0.0	8.7	2.5	0.0	18.1	1.9	0.0	1747
Cycle Q Clear(g_c), s	1.4	0.0	12.6	1.8	0.0	8.7	2.5	0.0	18.1	1.9	0.0	16.0
Prop in Lane	1.00		0.14	1.00	0.0	0.10	1.00	0.0	0.04	1.00	0.0	16.0
Lane Grp Cap(c), veh/h	468	0	610	392	0	636	292	0	528	256	0	0.11
V/C Ratio(X)	0.12	0.00	0.59	0.18	0.00	0.43	0.29	0.00	0.85	0.26	0	518
Avail Cap(c_a), veh/h	572	0	610	480	0.00	636	355	0.00	631	340	0.00	0.80
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	644
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	13.8	0.0	19.3	14.2	0.0	17.6	17.3	0.0	23.8		0.00	1.00
Incr Delay (d2), s/veh	0.1	0.0	4.2	0.2	0.0	2.1	0.6	0.0	9.7	17.9	0.0	23.8
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	5.7
%ile BackOfQ(95%),veh/ln	1.0	0.0	9.4	1.3	0.0	6.7	1.7	0.0	13.2	0.0	0.0	0.0
Unsig. Movement Delay, s/veh		9.9	0.7	1,0	0.0	0.7	1.7	0.0	13.2	1.4	0.0	11.5
nGrp Delay(d),s/veh	13.9	0.0	23.5	14.4	0.0	19.8	17.8	0.0	33.4	40.4	0.0	00 5
_nGrp LOS	В	A	C	В	A	В	В		33.4 C	18.4	0.0	29.5
Approach Vol, veh/h	4-1-1-1	418	No.		345	<u> </u>		A	U	В	A	<u>C</u>
Approach Delay, s/veh		22.2		-	18.7			537	Alper-		480	11-31
Approach LOS	1	C			В	20.00	NI THE	30.9 C		-	28.0	
Timer - Assigned Phs	1	2	3	4	5		7			different season	С	
Phs Duration (G+Y+Rc), s	8.3	26.6	8.3			6		8				
Change Period (Y+Rc), s	5.0	5.0		30.0	9,2	25.7	7.7	30.6				
Max Green Setting (Gmax), s	7.0	26.0	5.0	5.0	5.0	5.0	5.0	5.0				
Max Q Clear Time (g c+l1), s	4.4	20.1	7.0	25.0	7.0	26.0	7.0	25.0		وبعدور		
Green Ext Time (p_c), s	0.0	1.5	4.3 0.0	14.6 1.7	5.0 0.0	18.0 1.6	3.9	10.7				roenes.
ntersection Summary		1134	DUNE		0.0	1.0	0.0	1.4	ACCOUNT NAME OF THE PARTY OF TH	en en	3 - 3 F	11(3)
ICM 6th Ctrl Delay	DIRECTOR OF		25.7		L SAIL	10 X 20 - 1 - 1					- Paris-Ro	100
ICM 6th LOS	01200		25.7	Service Co.				ALC: N		in a single		obita.
ION OUI LOG			C									

PNPG.00002 Timing Plan: Weekday P.M. Peak Hour

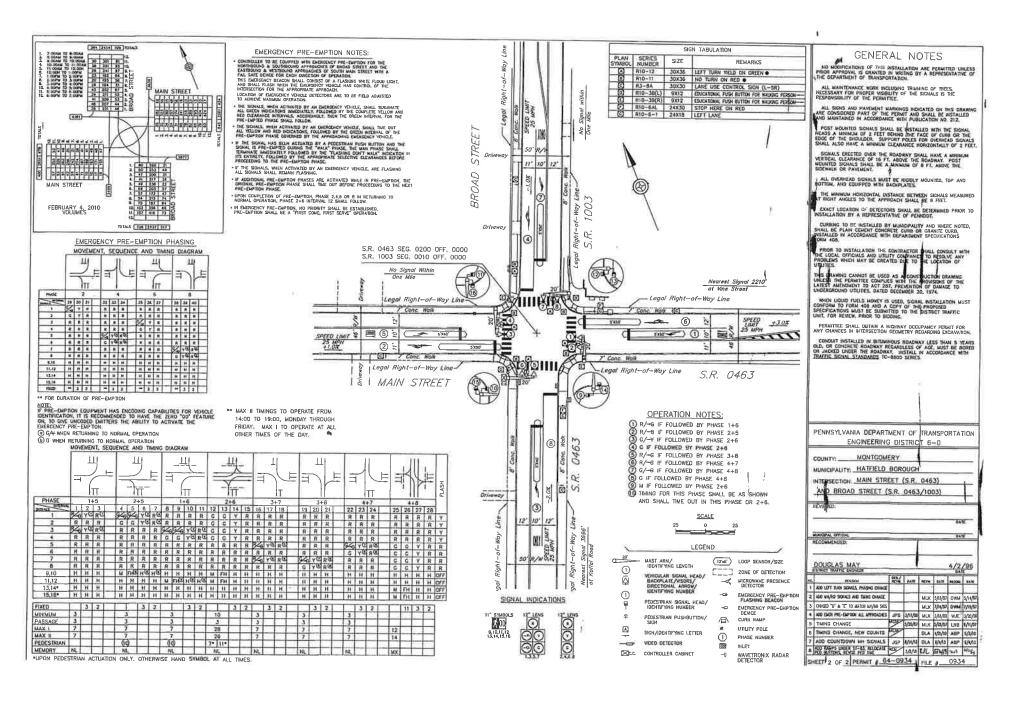
	-	4	†	<i>></i>	-	ļ
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	14		1>			414
Traffic Volume (vph)		1	496	2	- 1	459
Future Volume (vph)	1	1	496	2	1	459
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	10	10	10	11
Grade (%)	0%		-1%			1%
Link Speed (mph)	25		25			25
Link Distance (ft)	200		187			130
Travel Time (s)	5.5		5.1			3.5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	1%	2%	2%	2%
Shared Lane Traffic (%)				No.	7.1	
Sign Control	Stop		Free			Free
Intersection Summary			E STATE			
Area Type:	Other					
Control Type: Unsignalized		X TO				-80

Lanes, Volumes, Timings TPD

Synchro 11 Report Page 3

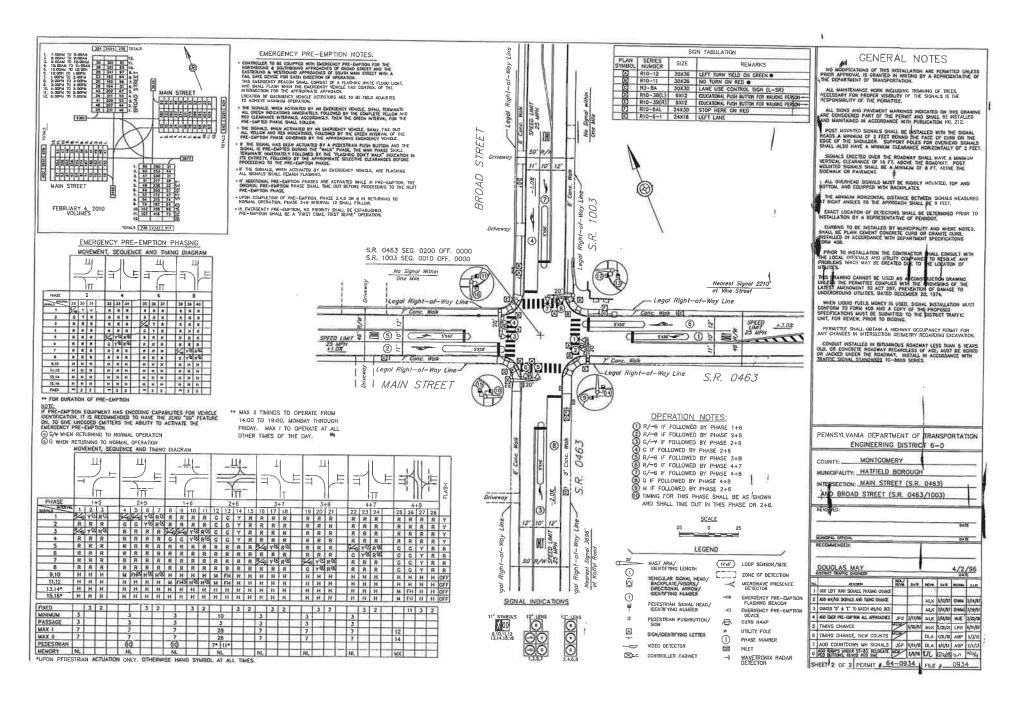
No two body						
Intersection		MAKE				25/
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	**		7		JUL	414
Traffic Vol, veh/h	1	1	496	2	1	459
Future Vol, veh/h	1	1	496	2		459
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free		Free
RT Channelized	100	None	E 1 .	None		None
Storage Length	0			-		, -);
Veh in Median Storage	e, # 0		0		Ш	0
Grade, %	0		-1	-		1
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	1	2	2	2
Mvmt Flow	1	1	551	2	1	510
Major/Minor	Minor1	A A	Vajor1	0.70	Major2	ALUX P
Conflicting Flow All	809	552	0	0	553	0
Stage 1	552	332	-	-	223	0
Stage 2	257		8.20		= = 17	
Critical Hdwy	6.4	6.23	Miles	L.E.	4.3	2/4/7-77
Critical Hdwy Stg 1	5.43	0.20		-	4.5	
Critical Hdwy Stg 2	5.83		N.	a Pa	BIR	99
Follow-up Hdwy	3	3.1		1	3	
Pot Cap-1 Maneuver	392	561		10.17	774	N-
Stage 1	651	-	-	-		
Stage 2	879		Y			
Platoon blocked, %		-	_			
Mov Cap-1 Maneuver	391	561	2012		774	
Mov Cap-2 Maneuver	391	5	-		-	
Stage 1	651		10.0			
Stage 2	877	27				
CAN ELEGINE				- N		1
Approach	MATE		MID	-	00	-
	WB.	ALTERNATION OF THE PERSON OF T	NB		SB	115-20
HCM Control Delay, s HCM LOS	12.8	-	0		0	ATE.
HOW LOS	В					
				200	2 8 3	
Minor Lane/Major Mymt		NBT	NBRW	BLn1	SBL	SBT
Capacity (veh/h)			1	461	774	NA.
HCM Lane V/C Ratio		- 5	- 0	0.005		-
HCM Control Delay (s)				12.8	9.7	0
HCM Lane LOS				В	Α	Α
HCM 95th %tile Q(veh)			1 - 4/7	0	0	15.5

2: Main Street & Site Driveway 2026 Projected (Build) Conditions


Timing Plan: Weekday P.M. Peak Hour

,	•	4	†	*	-	↓
Lane Group	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	W		B			44
Traffic Volume (vph)	MILE I	1	496	2	1	459
Future Volume (vph)	1	1	496	2	1	459
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	10	10	10	11
Grade (%)	0%		-1%			1%
Link Speed (mph)	25		25			25
Link Distance (ft)	200		187			130
Travel Time (s)	5.5		5.1			3.5
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles (%)	2%	2%	1%	2%	2%	2%
Shared Lane Traffic (%)	177					
Sign Control	Stop		Free			Free
Intersection Summary	A HARE			417		
Area Type:	Other					
Control Type: Unsignalized	den Er					

Intersection	music)		إزالا	Non		
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	WOR	T)	INDIX	ODL	41
Traffic Vol, veh/h	1	1	496	2	1	459
Future Vol, veh/h	1	1	496	2		459
Conflicting Peds, #/hr		0	0	0	0	409
Sign Control	Stop	Stop		Free	Free	Free
RT Channelized	Otop	None	1100	and the same of	riee	None
Storage Length	0	-		HONE	11111	140116
Veh in Median Storag					120	0
Grade, %	0	H	-1			1
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	1	2	2	2
Mvmt Flow	1		551	2	1	510
			001	-		010
Mataline	V-10-					
	Minor1		Major1		Major2	1000
Conflicting Flow All	809	552	0	0	553	0
Stage 1	552		10.00	100		
Stage 2	257	- 0.00		1,000	-	(·j•:
Critical Howy	6.4	6.23			4.3	
Critical Howy Stg 1	5.43	•		•	-	5 9 7
Critical Hdwy Stg 2 Follow-up Hdwy	5.83	0.4				or i testi
Pot Cap-1 Maneuver	3	3.1			3	_ ===
Stage 1	392 651	561		1.3	774	
Stage 2	879	120	•			
Platoon blocked, %	6/9					200
Mov Cap-1 Maneuver	391	561	-	- 3	774	
Mov Cap-1 Maneuver	391	501	1	- P	774	- 50
Stage 1	651	N/		_	•	•
Stage 2	877					*
Stage 2	011	KEISE		_	72	-
		#15.7% T	Milita		311	10.10
Approach	WB		NB		SB	
HCM Control Delay, s	12.8		0		0	
HCM LOS	В					
7 71 71 71		36				عراني
Minor Lane/Major Mvm		NBT	NBRW	Rint	SBL	SBT
Capacity (veh/h)			THE	461	774	-
HCM Lane V/C Ratio		2	- (0.005		
HCM Control Delay (s)			10 107	12.8	9.7	0
HCM Lane LOS			(8)	В	Α	A
HCM 95th %tile Q(veh)				0	0	-


APPENDIX F: PennDOT-Approved Signal Plan

APPENDIX F: PennDOT-Approved Signal Plan

APPENDIX G:Gap Analysis

Gap Calculation for Unsignalized Intersection Left Turn from Minor Road to 2-Lane Major Road

Intersection:

Major St.

N. Main Street

Minor St.

Full-Access Driveway

Time Studied:

Weekday A.M. Peak Hour

Date of Study: 10/8/2024

Critical Gap:

6.4

Follow-Up Time:

3

Length of Gap (seconds)	Vehicles Accomodated	Number of Gaps Observed	Total Vehicles
0 - 6.4	0		0
6.4 - 9.4	1	51	51
9.4 - 12.4	2	24	48
12.4 - 15.4	3	16	48
15.4 - 18.4	4	12	48
18.4 - 21.4	5	7	35
21.4 - 24.4	6	6	36
24.4 - 27.4	7	3	21
27.4+	8	11	88
Total	375		

Minimum Gap	Number of Cars
0	0
6.4	1
9.4	2
12.4	3
15.4	4
18.4	5
21.4	6
24.4	7
27.4	8

APPENDIX G: Gap Analysis

Gap Calculation for Unsignalized Intersection Left Turn from Minor Road to 2-Lane Major Road

Intersection:

Major St.

N. Main Street

Minor St.

Full-Access Driveway

Time Studied:

Weekday A.M. Peak Hour

Date of Study: 10/8/2024

Critical Gap: Follow-Up Time:

6.4

Length of Gap (seconds)	Vehicles Accomodated	Number of Gaps Observed	Total Vehicles
0 - 6.4	0		0
6.4 - 9.4	1	51	51
9.4 - 12.4	2	24	48
12.4 - 15.4	3	16	48
15.4 - 18.4	4	12	48
18.4 - 21.4	5	7	35
21.4 - 24.4	6	6	36
24.4 - 27.4	7	3	21
27.4+	8	- 11	88
Total	375		

Minimum Gap	Number of Cars
0	0
6.4	1
9.4	2
12.4	3
15.4	4
18.4	5
21.4	6
24.4	7
27.4	8

Fnd Time Socor F 10 00 AM			Gaps: 1 sec 1	22
10 03 AM	0.1	3/	A see: 4	51 35 20
1:30-17 AM	13	13	5 sec	13 20 19
:30:34 AM	ñ	17	10 sec 10	12 5 7
:30:47 AM	9	13	12 sec 12 13 sec 53 14 sec 14	12 8
130:50 AM	02	2	15 sec 15 16 sec 15 17 sec 17	3
:30:53 AM	03	20	18 sec 19	5
10.54 AM	24	14	20 sec 20 21 sec 21 22 sec 22	2
11 08 AM 11 29 AM	21	21	21 sec 23 24 sec 24 25 sec 25	2 2
:31:30 AM :31:32 AM	02	25	25 sec 25 25 sec 27 28 sec 28	0
:31:33 AM :31 56 AM	23	23	29 sec 29 10 sec 30 31 sec 31	1
31:57 AM :32:05 AM	09	(40)	32 anc 32 33 sec 33 34 sec 54	0
32:05 AM 32:09 AM	04	4	35 sec 35	0
32:11 AM :32:18 AM	07	7	17 pec 27 33 sec 38 33 sec 35 60 sec 40	9
32:20 AM :32:21 AM	01	1	42 sec 42	1 0
1:32:46 AM 1:32:49 AM	ės.	35	43 sec 43 44 sec 44 45 sec 45	1 0
:32:50 AM :32:52 AM	02	2:	48 pec 46 47 pec 47 48 pec 48	10
:32:57 AM :33:04 AM	0.7	2	19 sec 49 50 sec 50 51 sec 51	0
33.05 AM 33.11 AM	06		52 sec 52 53 sec 53 54 sec 54	0
33:12 AM	26	25	55 sec 55 56 sec 56 57 sec 57	0
33:19 AM	11	18	58 sec 58 59 sec 59 60 sec 60	0
23:18 AM 34:00 AM	02	2	+1 mm 01	0
:34:11 AM :34:18 AM	67	,		
34:19 AM 34:26 AM	02	2		
;34:27 AM	04	20		
:34:31 AM	02	2:		
34:33 AM	44	44		
35:21 AM				
135:24 AM 135:25 AM	65			
35:26 AM	01	10		
35:39 AM	12	п		
:35:44 AM :35:54 AM	94	#3		
35:56 AM	03	*6		
2:35:58 AM	ůτ	8)		
1 16 54 AM	06	*		
136:05 AM	02	ε		
7:36:22 AM	15	13		
7:36:23 AM 7:36:24 AM	01.	8		
7:36:25 AM 7:36:27 AM	03			
7:36:38 AM 7:36:31 AM	os	*		
7:36:33 AM 1:36:44 AM	181	11		
7:37:10 AM 7:37:22 AM	n	15		
7 37:23 AM 7:17-25 AM	05	1		
7:37:26 AM 7:37:31 AM	05	5		
7:37:32 AM 7:37:36 AM	04	*		
7:37:37 AM 7:37:39 AM	91)	2		
7:37:40 AM 7:37:44 AM	04			
7:37:44 AM 7:37:48 AM	Ďŧ.			
7 37:49 AM	28	28		

7:16:18 AM 7:16:20 AM	02	2
7-18-21 AM 7-18-25 AM	04	æ
7:38:26 AM 7:38:28 AM	02	2:
7:38:30 AM 7:38:16 AM	06	6)
7:38:55 AM 7:39_11 AM	15	16
7:39:12 AM 7:39:14 AM	02	2
7:19:15 AM 7:19:15 AM	01	(6)
7:39:17 AM 7:39:24 AM	07	20
7:39:25 AM 7:39:36 AM	11	11
7:39:36 AM 7:39:46 AM	to	10
7.39.50 AM	03	4
7:39:S2 AM 7:39:S7 AM	05	3
7:39:57 AM 7:40:06 AM	09	9
7:40:15 AM 7:40:18 AM	О3	ã
7:40:23 AM 7:40:26 AM	03	3
7 40 25 AM 7 40 10 AM	04	*
7:40:40 AM 7:40:47 AM	02	2
7:40:43 AM 7:40:47 AM	04	4
7:40:48 AM 7:40:49 AM	01	\hat{i}
7 40:50 AM 7:40:57 AM	07	,
7:40:58 AM 7:41:03 AM	05	¥.
7:41:04 AM 7:41 08 AM	04	•
7.41.09 AM 7.41.18 AM	09	é
2:41:21 AM 2:41:24 AM	03	1
7:41:27 AM 7:41:33 AM	05	6
7:41:35 AM 7:41 42 AM	06	60
7 41:42 AM 7:41 43 AM	01	3
7:41 52 AM 7:41 S4 AM	0z	1
7 41 55 AM 7:41:56 AM	01	9
7:41:59 AM 7:42:04 AM	DS	3
7-42-07 AM 7-42-10 AM	03	ä
7 42 15 AM 7 42 31 AM	18	LIA.
7:42:25 AM 7:42:39 AM	04	4
7:42:41 AM 7:42:48 AM	07	ý.
7:42:49 AM 7:42:59 AM	10	10
7:43:00 AM 7:43:02 AM	02	2
7:43:02 AM 7:43:06 AM	04	
7:43 10 AM 7:43 12 AM	02	
74527AM 74529AM	02	1
7-21-11-AM 7-43-34-AM	03	50 16
7 41 KS AM 7 44 D7 AM	32	12:
7 44 08 AM 7 44 05 AM	01	1
7-44-10 AM 2-14-12 AM	02	(2)
7 == 14 AM 7 == 10 AM	16	(5) 18
7:44 31 AM 7:44:34 AM	16	30
7 44 35 AM 7 44 36 AM	01	i
7:44 49 AM 7:44 52 AM	03	9
7.4433AM		্ত

.

A.M. Minor Left-Turn G		
\$2art/find Time Second \$130.00 AM 7:30:03 AM	03	3
7:30:04 AM 7:30:17 AM	n	13
7:30:17 AM 7:30:34 AM	17	u
7 30:34 AM 7:30:47 AM	n	n
7:30:48 AM 7:30:50 AM	02	3
7:30:51 AM 7:30:53 AM	02	2
7:30:34 AM 7:31:08 AM	14	14
7:31:05 AM 7:31:25 AM	21	21
7:31:30 AM 7:31:32 AM	02	2
7 31:33 AM 7:31:56 AM	23	23
7:31:57 AM 7:32:05 AM	0.8	i
7:32:05 AM 7:32:09 AM	04	4
7:32:11 AM 7:32:18 AM	90	9
7:32:20 AM 7;32:21 AM	ot	14
7:32:46 AM 7:32:49 AM	0)	3
7-32:50 AM 7:32:52 AM	02	
7:32:57 AM 7:33:04 AM	97	1
7:33:05 AM 7 33:11 AM	06	4
7,33 L2 AM	24	36
7:33:39 AM 7:33:57 AM	18	18
7-13-58 AM 7-14-00 AM	0.0	į
7:34:11 AM 7/34:18 AM	01	ě
7:34:19 AM 7:34:26 AM	01	9
7:34:27 AM 7:34:31 AM	04	
7:34:31 AM 7:34:33 AM	07	á
7:34:36 AM 7:35:20 AM	44	44
7:35:21 AM 7:35:24 AM	03	3
7:35:25 AM 7:35:26 AM	01	э
7:35:27 AM 7:35:39 AM	12:	ш
7:35:40 AM 7:35:44 AM	94	4
7:35:54 AM 7:35:56 AM	02	
7:35:57 AM 7:35:58 AM	01	1
7:35:58 AM 7:35:01 AM	06	6
7:36:04:4M 7:36:06:AM	az	1
7:36:07 AM 7:36:22 AM	13	15
7:36:23 AM 7:36:24 AM	01	1
7:36 25 AM 7:36:27 AM	202	Y
7:36:28 AM 7:36:31 AM	0)	3.
7:36:33 AM 7:36:44 AM	TT.	11
7:37:10 AM 7:37:22 AM	12	12
7:37:23 AM 7:37:25 AM	02	1
7:37:26 AM 7:37:31 AM	05	5
7:37:32 AM 7:37:36 AM	04	:40
7:37:37 AM 7:37 39 AM	03	ŧ
7:37 40 AM 7:37:44 AM	64	4
7:37:44 AM 7:37:48 AM	04	IA:
7:37:49 AM 7 W L7 AM	28	28

				Critical	
1 sec		- 34	-	Follow up:	con
2 sec	2	82	51,000	a Collection	
1 sec		51.	000		diam'r.
Late	4	. 35		LIST IN	11271
Suc	340	10			HO.
S sec	5	13		1000	
7 sec	7	20	1 car	33	15252
f sec		19			I DECEM
fi sec	94	- 37		14	-
10 sec	111	7	lers	- "	
	12			-	1000
13 sec	13-	- 11	Learn	16	1000
14 sec	14	-	TCM.		
15 sec	15			1 5 5 5 5 6	Sec. 1
16 sec	10	- 1	tom	12	100
17 sec	17	-	Lan:		1000
18 nec	15				1791
19 wc	19	- 5	SCHE.	, ,	
	20	0	1		
21 sec	21	- 2	45500		
ZZ sec	22	- 2	6 cars	- 1	1000
23 sec	23	2	-	1	DO L
24 pac	74	3		-	-
25 sec 26 sec	25		Jean:	1	-
26 sec	26			1	-
17 sec	22	0		11	-
28 sec			I carr	- 11	-
29 sec 30 sec	20	1	-	Total Care	
10 sec	ni -	-		THE LAKE	
	32	1			
33 sec		0			
14 100	14	1	1		
15 sec	35	. 0			
16 MC	36	- 0			
37 sec	375	. 0			
18 sec 19 sec	30	0	1		
19 HC	35				
	40	. 0			
	41				
AZ sec	e.	0	1		
43 sec	43	. 0	1		
14 yes	45	1			
45 sec 45 sec	46	1			
45 sec 47 sec	47				
48 sec	44	- 6			
49 inc	45	0			
10 sec	10				
Sisec	52	0			
52 sec	52	- 0			
53 sec	531	0	1		
54 sec	54	0			
	55	0			
55 sec	56	- 0	1		
55 sec 56 sec	579	0	1		
55 sec 56 sec	-				
55 sec 56 sec 57 sec 58 sec	50	- 0	1		
SS sec SG sec S7 sec S8 sec S9 sec	59	0			
55 sec 56 sec 57 sec 58 sec	59	0	1		

.

7 38:18 AM		
7 38:20 AM 7:38:21 AM	02	3
7:38 25 AM	04	4
7 38:26 AM 7:38 28 AM	02	1
7: M 30 AM 7:38 35 AM	06	
7:16:55 AM 7:19:11 AM	16	16
7:29:12 AM 7:29:14 AM	02	-3
7:39 IS AM 7:39 IS AM	01	1
7 39:17 AM 7 39:24 AM	07	7
7:39:25 AM 7:39:36 AM	n	11
7:39:36 AM 7:30:46 AM	10	lo.
7 39 47 AM 7:39 50 AM	03	1
7:39:52 AM 7:39:57 AM	05	5
7:39:57 AM 7:40:06 AM	09	,
7:40:15 AM 7:40:18 AM	03	î
7.40.23 AM 7.40.25 AM		7.5
7:40:26 AM	03	10
7:40:30 AM 7:40:40 AM	04	1063
7:40:42 AM 7:40:43 AM	02	(2)
7:40:47 AM 7:40:48 AM	04	4
7 40:49 AM 7:40:50 AM	01	1
7:40 57 AM	07	91
74101AM	05	.5
7.41.08 AM	04	4
7:41:09 AM 2:41:18 AM	09	
7:41 21 AM 7:41 24 AM	03	.1
7:41 33 AM	05	*
7:41:46 AM 7:41:42 AM	06	
7:41 42 AM 7:41 43 AM	01	1
7 41:52 AM 7 41 54 AM	02	2
7 41:55 AM 7 41:55 AM	01	10
7.41 ST AM 7.42 DE AM	05	50
7.42.07 AM 7.42.10 AM	D3	ì
7:42 L5 AM 7:42:33 AM	ï	18
7 42:35 AM 7 42 39 AM	77 04	(80)
7 42:41 AM 7:42:48 AM		
7 42:49 AM	07	120
7 42 59 AM	10	10
7.43,02 AM	02	1
7.43.06 AM 7.43.10 AM	04	
7:43:27 AM	02	91
7:43:29 AM	02	3
7 43 34 AM	03	ä
7:43:35 AM 7 44:07 AM	32	32
7 44:08 AM 7 44:09 AM	01	i
7:44:10 AM 7:44:12 AM	02	x
7:44 14 AM 7:44 30 AM	16	16
7 44:31 AM 7:44:34 AM	03	ÿ.
7:44:35 AM 7:44:36 AM	01	ï
7:44:49 AM 7:44 52 AM		
	03	1

7:44:59 AM	06		
7:45:00 AM 7:45:02 AM	03	2	
7:45:03 AM 7:45:04 AM	01	1	
7 45:05 AM 7:45 09 AM	94	4	
7-45-10 AM 7-45-13 AM	03	Œ.	
7.45.16.4M	03	2	
7:45:18 AM 2:45:19 AM	01	ï	
7:46:12 AM 7:46 14 AM	61	2	
7:46 21 AM 7:46:23 AM	02	1	
7:46:24 AM 7:46:25 AM	61	æ	
7:46:39 AM 7:46:41 AM	02	2	
7:46 42 AM 7:46 45 AM	0)	1	
7:46:49 AM 7:46:51 AM	02	1	
7:46:52 AM 7:47:08 AM	16	16	
7:47:10 AM 7:47 29 AM	19	19	
7 47:31 AM 7:47:33 AM	02	2	
7:47:34 AM	01	,	
7,47,37 AM 7,47,42 AM 7,47,51 AM	09	9	
7.47.52 AM	01		
7 47:54 AM	it	n	
7:48:05 AM 7:48:06 AM			
7:48:10 AM 7:48:11 AM	04	16	
7:48 L3 AM 7:48 L4 AM	02	3	
7:48:17 AM	03	×	
7-18-19 AM 7-18-21 AM 7-18-23 AM	01	1	
7-49-24-888	02	(E)	
7 49 19 AM	04	*	
7:49:23 AM 7:49:23 AM	04	4	
7 49:24 AM 7:49:27 AM	01	1	
7:49 31 AM 7:49:32 AM	04	:4	
7:49:35 AM 7 49:36 AM	01	53	
7:49:37 AM	01	1	
7,16.49 AM	12	12	
7-19-50 AM 2-19-55 AM	05	3	
7:49:56 AM 7:50:42 AM	46	46	
7:50:42 AM 7:50:59 AM	:17	17	
7 50:59 AM 7 51:01 AM	02	3	
7:51:03 AM 7:51:11 AM	OS		
7.51:11 AM 7.51:45 AM	34	34	
7 51:47 AM 7:51:49 AM	03	31	
7:51 49 AM 7:51 59 AM	10	10	
7:52:00 AM 7:52:03 AM	01		
7:52:04 AM 7:52:06 AM	92	2	
7/52:08 AM 7:52:09 AM	O1	266	
7:52 L1 AM 7:52 L4 AM	01	(3)	
7.52:15 AM 7.52:18 AM	01	1	
7:52:20 AM 7:52:25 AM	06		
7:52:27 AM			
7 52 30 AM	01		

7.52.25 AM 7.52.43 AM	08	-
7:52:45 AM 7:52:48 AM	04	14
7:52:49 AM 2:52:51 AM	02	2
7:52:53 AM 7:52:55 AM	02	2
7:52 56 AM 7:52:58 AM	02	
7:52:59 AM 7:53:00 AM	01	
7:53:43 AM		
7:53:47 AM	02	*
7:53 48 AM 7:54:01 AM	01	1
7:54:04 AM 7:54:05 AM	03	1
7:54:07 AM	02	23
7:S4; t0 AM	03	1
7.54:17 AM	07	2
7:54:18 AM 7:54:20 AM	02	1
7:54:22 AM 7:54:30 AM	08	
7 54:32 AM 7:54:34 AM	02	
7:55:09 AM 7:55:12 AM	03	1
7:55:13 AM 7:55:14 AM	01	4
7 55:19 AM 7:55:21 AM	02	2
7:S5:22 AM 7:SS:32 AM	10	10
7:55:33 AM 7:55:37 AM	04	
7:55:42 AM 7:55:44 AM	02	34
7 55 49 AM		38
7:56:51 AM 7:56:53 AM	02	2
7:56:54 AM	01	1
7:56:55 AM 7:56:56 AM	00	0
7:57:04 AM 7:57:05 AM	99	*
7.17 G7 AM	02	2
7:57 08 AM 7:57 32 AM	24	24
7 57 32 AM 7:57:44 AM	12	12
7 57:46 AM 7 57 49 AM	03	100
7:57 52 AM 7:58:05 AM	13	n
7:58 15 AM 7:58 24 AM	D9	*
7:18:25 AM 7:58:26 AM	01	1
718 31 AM 754 48 AM	17	17
7.14 19 AM 7.58:50 AM	01	
7 SA S2 AM		9
7:59:00 AM 7:59:01 AM	OB	
7 59:25 AM 7:59 25 AM	24	24
7 59 30 AM 7:59:31 AM	05	3
7:59 33 AM 7 59 34 AM	02	38
7 59 35 AM	01	1
7:59:38 AM 7:59:42 AM	04	9
7.59 13 AM 7.51 18 AM	05	•
7 59 52 AM 7 59 56 AM	04	×
7:59:58 AM 7:59:59 AM	D3	8
7 19 55 AM 8 00 11 AM	1.2	12
8:00 12 AM	08	
100 27 AM 8:00 35 AM	08	
1 00 36 AM 1 00 38 AM	02	
1 00 39 AM 1 00 45 AM	07	*
0.00	u/	10

7.44.59 AM	061	,6:	
7,45.02 AM 7:45.02 AM	02	2	
7.45.03 AM 7.45.04 AM	01	(8)	
7:45:05 AM 7:45:09 AM	84	*	
7:45:10 AM 7:45:13 AM	03	3	
7:45:14 AM 7:45:16 AM	02	2	
7 45:18 AM 7:45:19 AM	01	ï	
7:46:12 AM 7:46:14 AM	03	9	
7.46-21 AM 7.46-23 AM	02	2	
7:45:24 AM 7:45:25 AM	01	х	
7:46:39 AM 7:46 41 AM	02	7	
7 46 42 AM 7 46 45 AM	03	9	
7 46 49 AM 7;46:S1 AM	02	,	
7:14:52 AM 2:47:08 AM	16	16	
7.47.10 AM 7.47.29 AM	390	:190	
7:47:31 AM 7:47:33 AM	02	ş	
7:47:33 AM 7:47:34 AM 7:47:37 AM	03	· ·	
7:47:42 AM	09		
7:47:51 AM 7:47:52 AM			
7:47:53 AM 7:47:54 AM	61	3	
7:48:05 AM 7:48:06 AM	310	111	
7:48:10 AM	04	*	
7-48-13 AM	02	2	
7:48:18 AM	03	3	
7:48:19 AM 7:48:21 AM	01	36	
7:49:14 AM	02	2	
7:49 18 AM 7:49:19 AM	94	9	
7 49:23 AM	04	*	
7 19 23 AM 7 19 26 AM	01	1	
7:49:27 AM 7:49:31 AM	04	;4	
7:09:32 AM 7:09:33 AM	03	ã	
7:49:36 AM 7:49:37 AM	01	3	
7 49 37 AM 7 49:49 AM	13	12	
7 49:55 AM 7 49:55 AM	05	35	
7:49:56 AM 7:50:42 AM	46	46	
7:50:42 AM 7:50:93 AM	17	17	
2:50:19 AM 7:51:01 AM	02	2	
7:51:03 AM 7:51:11 AM	08		
7:51 11 AM 7:51:45 AM	14	54	
7:51:47 AM 7:51:49 AM	02		
7:51 49 AM 7:51:59 AM	10	10	
7:52:00 AM 7:52:01 AM	0)	3	
2.52-04 AM 2.52-04 AM	02		
7:52:06 AM			
7-52-09 AM 7-52-11 AM	01	ac a.	
7:52:15 AM	0)	190	
7:52 LB AM 7:52 20 AM	01	3	
7:52 26 AM 7:52:27 AM	06		
7:52:30 AM 7:52:31 AM	0)	- 100	
7 52:34 AM	03	1	

7:52:35 AM		
7:52:43 AM 7:52:44 AM	08	(4)
7 52:48 AM 7:52:49 AM	04	•
7:52:51 AM	02	
7:52:55 AM	02	3
2 52:58 AM 2 52:59 AM	02	3
7:53:43 AM	01	3,3
7:53:45 AM 7:53 47 AM	02	2
7:53:48 AM 7:54:01 AM	01	3.
7:54:04 AM	03	3
7:54:07 AM	02	2
7:54:10 AM	03	3
7:54:17 AM 7:54:18 AM	07	,
7 54:20 AM	02	8
7:54:22 AM 7:54:30 AM	08	*
7:54:34 AM	02	10
7:55:09 AM 7:55:12 AM	03	15
7:55:13 AM 7:55:14 AM	01	Ē
7:55:19 AM 7:55 21 AM	02	1
7:55:32 AM 7:55:32 AM	10	LD
7:55:32 AM 7:55:37 AM	04	(4)
7:55:42 AM 7:55:44 AM	02	4.
7.56-93 AM 7.56-51 AM	02	2
7:56 53 AM 7 56 54 AM	01	
7:56:55 AM 7:56:55 AM	00	10
7:56:56 AM 7:57:04 AM	08	3.
7 57:05 AM 7-57 07 AM	02	ī
7:57:08 AM 7:57:32 AM	24	24
7:57:32 AM 7:57:44 AM	12	\mathbf{u}
7 57 48 AM 7 57 48 AM	03	ж
7-38 OS AM	13	(31)
7:58:15 AM 7:58 24 AM	09	
7:50:25 AM 7:50:26 AM	01	$\hat{\mathbf{j}}$
7:58 31 AM 7:58 48 AM	17	17
7:58:50 AM	01	12
7:58 S2 AM 7:59:00 AM	08	.6
7:59:01 AM 7:59:25 AM	24	24
7:59:35 AM 7:59:30 AM	os	3
7 39 13 AM	02	2
7:59:34 AM 7:59:35 AM	01	(d):
7 59 38 AM 7 59 42 AM	04	4
7:59:43 AM 7:59:48 AM	05	
7 59:52 AM 7:59 56 AM	04	i i
7 59:56 AM 7:59:59 AM	03	(3
7:59 59 AM 8:00 11 AM	12	12
8:00 L2 AM 8:00:20 AM	80	4
8:00:27 AM 8:00:35 AM	08	*
8:00:36 AM 8:00 38 AM	02	2
8:00:46 AM	07	,

8:00:58 8:00:58 8:01:00 8:01:00 8:01:06 8:01:06 8:01:01 8:01:01 8:01:02 8:01:20	AM AM AM AM	09	2
8:01:00 8:01:06 8:01:06 8:01:06 8:01 17 8:01 20 8:01:21	AM AM AM	02	2
8:01:06 8:01:12 8:01:21 8:01:21	AM		
8:01 17 8:01 20 8:01:21	200	05	3
8:01:20 8:01:21	MA	06	*
8:01:21		0)	1
8:01/24	AM AM	01	3
8:01 25 8:01 31	AM AM	04	
8:01:32 8:01:34	AM AM	02	2
8.01.34 8.01.39	AM AM	01	3
B:01:40 8:01:42	AM AM	0)	a
8:01:44 8:01:50	AM	06	*
8:02:00 8:02:02	AM	02	,
8:02:02 8:02:09	AM	56	
8:02:39 8:02:48	AM	09	3
8:02:48 8:02:50 8:02:51		01	
8:02:54	AM		(a)
8:02:5S 8:03:03	AM	01	38
8:03:07 8:03:08	AM	04	3
8:03:13 8:03:15	AM AM	05	3
8:03:37 8:03:39	AM	22	22
8:03:39 8:03:48 8:04:11	AM	09	.9
8:04:15	AM	94	
8:04:18 8:04:18	AM	02	ż
8 04 19 8 04 21	ANA	05	2
8:04:23 8:04:36	ΔM	13	13
8:04:37 8:04:41	AM	04	19
8:04 42 8:04:47	AM	01	3
8:04 48 8:04:51	AM AM	98	3
E 04.52 E 05.00	AM AM	OS	
8 05 01 8 05 10	AM.	03	(9)
8 05 30 8 05 33	AM AM	02	2
8:05 33 8 06:35	AM AM	02	1
8:05:38 8:05:43		05	
8:05:44 8:05:46	AM	02	92
8:05:48 8:05:50	AM	03	
8.05.31	AM	LH.	18
8:06:13	AM		4
8:06 15 8:06 15	AM	94	
8:06:30 8:06:31	004	15	15
8:06:50 8:06:53	MAN	19	19
8:06:55	AM	01	
1 07 01 1 07 01	AM	05	3
8 07:11 8 07:11	444	06	
8:07 1	MA	91	7. E
B 07:14	AM	03	18%
8:07:31 8:07:31	AM	19.	19
8 07:33 8:07:50	5 AM	17	19
8:07:5 8:07:5	MA 9	602	2
8:08:01 8:08:15		19	19
8:08:2	MAD		

8:08:33 AM 8:08 36 AM	13	13
8:08:39 AM 8:08 S0 AM	03	
8 CM 53 AM 8:08 54 AM	03	(1)
8:00 S6 AM 8:06 S8 AM	02	3
8:09:26 AM 8:09:27 AM	28	28
8:09:36 AM 8:09:37 AM	09	39
8:10:02 AM 8:10:04 AM	25	25
8:10:13 AM 8:10:14 AM	09	,
8:10 17 AM 8:10 18 AM	03	3
8: IO:23 AM 8 10:23 AM	05	3
8:10:26 AM 8:10:30 AM	D3	1
8:10:37 AM 8:10:38 AM	07	- 26
8:10:52 AM 8:10:53 AM	14	16
8:11:01 AM 8 11:02 AM	BO	*
8:11:05 AM 8:11:06 AM	03).
8:11:09 AM 8:11:12 AM	0)) 0
8 I1:37 AM 8:11:37 AM	25	15
8:11:42 AM 8:11:42 AM 8:11:45 AM	03	3
8.11:59 AM 8 L2:12 AM	13	a a
8:12:16 AM 8:12:46 AM	30	30
8 12:47 AM 8: 12:55 AM	08	30
8:12 56 AM 8 13:01 AM	05	
8:13:01 AM II L3 22 AM	21	21
8:13:23 AM 8:13:25 AM	02	** **
8:13 29 AM 8 L3:41 AM	12	13
8:13:43 AM 8 13:50 AM	07	,
8:13 S1 AM 8:13:54 AM	03	
8 L3 55 AM 8 14:07 AM	12	12
8 14 08 AM 8:14:10 AM	02	
8 14:12 AM 8 14:19 AM	07	7.
8 14:19 AM 8 14 21 AM	02	20
8:14:21 AM 8:14:24 AM	03	*
8 14:24 AM 8 14:35 AM	11	116
8:14:37 AM 8:14:48 AM	11	u
8:14:51 AM	03	1
8 15 06 AM 8 15:34 AM	28	28
8 15 36 AM 8 15:51 AM	15	15
8 15 53 AM 8:16 09 AM	16	16
8:16:11 AM 8:16:13 AM	ΩZ	3
8 16 22 AM 8:16 27 AM	OS	3
8 16 28 AM 8 16 35 AM	07	ž
8 16:35 AM 8 16:50 AM	15	15
8:16:51 AM 8:16:54 AM	03	3.
8:16:55 AM 8:16:59 AM	04	3
8:17 00 AM 8:17 01 AM	01	
8 17:01 AM 8 17 18 AM	17	ø
8 17 19 AM 8 17 21 AM	DZ	£

8:00:57 AM	09	,
8:00:\$8 AM 8:01:00 AM	02	1
8:01:01 AM 8:01:06 AM	os	3
8:01:05 AM 8:01:12 AM	06	
E01:17 AM E01:10 AM	03	j
8:01:21 AM 8:01:24 AM	01	1
8 01:25 AM 8:01:31 AM	06	16.3
8:01:32 AM 8:01:34 AM	oz	(2)
8:01:34 AM 8:01:39 AM	os	5
E01 40 AM E01 42 AM	02	3
8-01-50 AM	06	*
8:02:00 AM 8:02:02 AM	03	$^{\circ}$
8:02:03 AM 8:02:09 AM	06	(6)
8:02:39 AM 8:02:48 AM	09	9,
E 02:53 AM	01	i.
8 02:55 AM 8 02:55 AM	Oil	3
E 03 07 AM	04	4
8:03:08 AM 8:03:13 AM	05	3.
8 03:15 AM 8:03:37 AM	22	22
8:03:39 AM 8:03:48 AM	69	,
8:04:11 AM 8:04:15 AM	96	4
8:04:16 AM 8:04:18 AM	0.0	1
E 04:21 AM	10	1
8.04:36 AM	13	13
E 04 37 AM E 04 41 AM B:04 42 AM	04	*
8:04:47 AM 8:04:48 AM	05	36
8:04:51 AM 8:04:52 AM	01	(3)
8:05:00 AM 8:05:01 AM	DS	
8:05:10 AM	29	,
E 05 32 AM	02	1
8:05:18 AM	02	2
8:05:43 AM 8:05:44 AM	25	(B)
8:05:46 AM 8:05:48 AM	03	1
8:05:50 AM 8:05:51 AM	03	*
8:06:09 AM 8:06:11 AM 8:06:15 AM	18 D4	18
BOG-IS AM BOG-IS AM		15
8:06:31 AM 8:06:50 AM	15	15
8:06:50 AM 8:06:53 AM 8:06:55 AM	92	2
8:06:56 AM 8:07:01 AM	05	3
8:07:05 AM 8:07:11 AM	06	4
EG7 13 AM EG7:13 AM	OI.	1
8 07:14 AM 8 07:16 AM	02	2
8.07:17 AM 8.07:36 AM	19	19
8 07 37 AM 8 07 56 AM	100	19
E-07-17 AM E-07-19 AM	05	1
8 08 00 AM 8 08 19 AM	19	19
8:00:20 AM		

E-DE-15 AM E-DE-16 AM	n	n
BUE 19 AM BOE 50 AM	03	3
# 08:53 AM	D)	1
8:08:58 AM	(02	(2)
8:09 26 AM 8:09 27 AM	28	28
8:09:36 AM 8:09:37 AM	09	3
8:10:02 AM 8:10:04 AM	25	25
8:10 13 AM	09	
8:10:17 AM	03	-3
B: LO: 23 AM	OS	39.
8 10:23 AM 8:10:26 AM	03	ũ
8:10:37 AM	07	7
8:10:18 AM 8:10:12 AM	14	14
MA E6:01:8 MA 10:11 8	08	*
8:11:02 AM 8:11:05 AM	03	3.
8:11:06 AM 8:11:09 AM	03	$\widetilde{\mathfrak{X}}$
8.11:12 AM 8.11:37 AM	25	25
8:11:37 AM 8:11:42 AM	os	\$
8 11 42 AM 8 11 43 AM	03	10
8:11:59 AM 8:12:12 AM	13	13
8:12 L6 AM 8:12:46 AM	30	10
8:12 47 AM 8 12 55 AM	08	
8:12:56 AM 8 13:01 AM	05	5
8:13 01 AM 8:13:22 AM	21	21
8 13 23 AM 8 13 25 AM	02	1
8 13 29 AM	12	12
8 13 13 AM 8 13 50 AM	07	'n
8 13 51 AM	D3	
# 13:55 AM 8:14:07 AM	12	12
8:14:08 AM 8:14:10 AM	02	9
8:14 12 AM 8:14:19 AM	97	9
6 14 19 AM 8:14:21 AM	02	ay ay
8 14 21 AM	03	3
8 14 24 AM 8 14 35 AM		
A 14:37 AM 8 14:48 AM	11	n u
8 14:48 AM	11	
8:14:51 AM 8:15:06 AM	03	1
8:15 34 AM 8 LS:36 AM	28	28.
8: L5:51 AM 8: L5:53 AM	15	15
8:15:53 AM 8:16:09 AM	16	16
816 11 AM	OZ	2
8 15:27 AM 8:16:27 AM 8:16:28 AM	os	1
B 15-35 A56	07	ε:
8 16 35 AM 8 16 50 AM	15	15
8 16 34 AM	03	8)
8.16.59 AM	04	
8 17 01 AM		(6)
	01	
8 17:01 AM 8 17:18 AM 8 17:19 AM	17	17

8:17:22 AM 8:17:25 AM	03	1	
8:17:27 AM 8:17:34 AM	07	2	
8:17:35 AM 8:17:37 AM	02	i	
8:17:45 AM	42	,	
2 17 45 AM 2 17 47 AM	02	2	
817 18 AM	01	3	
8:17:52 AM 8:18:00 AM	2007	Ä	
8:18:01 AM 8:18:03 AM	02	3	
8:18:04 AM 8:18:51 AM	47	O.	
8:18:52 AM 8:18:57 AM	05	3	
8 18 37 AM 8 19 09 AM	n	12	
8:19:10 AM 8:19 13 AM	03	ä	
8 19:14 AM 8:19:16 AM	02	1	
8:19:21 AM 8:19:23 AM	63	3	
8-19:24 AM 8-19:28 AM	04	4	
# 19-29 AM	01	31	
8.19.31 AM 8.19.33 AM	02	2	
8:19:34 AM 8:19:44 AM	10	10	
8:19 44 AM 8:19:51 AM	07	\bar{x}	
8:19:52 AM 8:20 14 AM	\boldsymbol{n}	22	
8:20:22 AM	07	3	
8:20:24 AM 6:20:32 AM	08	9	
8:20:33 AM 8:20:34 AM	91	1	
8 10:35 AM 8:30:43 AM	os	3	
8:30:48 AM 6:30:47 AM	01	0	
# 20:50 AM # 20:55 AM	os	5	
8:20:56 AM 8:20:58 AM	ož	Ĩ	
8:21:01 AM 8:21:32 AM	31	31	
8:21 33 AM 8:21 35 AM	01	3	
8:21:38 AM 8:21:45 AM	07	2	
8 21 50 AM	DR		
8 22 00 AM 8 22 01 AM	01	t	
8:22:06 AM 8:22:14 AM 8:22:15 AM	OB		
8 22:15 AM 8 22:15 AM 8:22:21 AM	00	G	
8:22:21 AM 8:22:29 AM 8:22:31 AM	ON	1,0	
8 22:31 AM 8:22:39 AM	OR	1	
8:22:45 AM 8:22:46 AM	0\$	1	
8:22:57 AM 8:22:58 AM	11	11	
8 23:02 AM 8:23:03 AM	(04)	(4)	
8:23:15 AM 8:23:22 AM	12	15	
8:23:24 AM 8:23:25 AM	02	18	
8:23 27 AM 8:23:30 AM	93	1	
8:23:34 AM	04	1	
8 23:18 AM 8 23:39 AM	(0)	16	
8:23:42 AM	01	1	
# 23.48 AM	06	1	
# 33-55 AM	02	E	
BJF (1 AM	33	13	

8:24:12 AM 8:24:25 AM	14	14
8:24:37 AM 8:24:31 AM	94	4
8:24:33 AM 8:24:45 AM	15	12
8:24 46 AM 8:24:47 AM	01	- 1
8:24:54 AM 8:25:02 AM	BO	- 31
8:25:03 AM 8:25:06 AM	03	ž
8:25:06 AM 8:25:10 AM	D4	4
8-25-12 AM	01	1
8:25:13 AM 8:25 14 AM	01	T.
8:25:16 AM 8:25 17 AM	01	313
8:25:23 AM 8:25:27 AM	04	*
8:25:28 AM 8:25:30 AM	02	20
8:25:31 AM 8:26 12 AM	41	41
8:26 L3 AM 8:26:20 AM	07	20
8 26;21 AM 8:26:23 AM	02	2
8:26:24 AM 8:16:25 AM	01	T
2 25 31 AM 2 25 33 AM	02	7
8 26 34 AM 8 24 42 AM	08	
8:26:45 AM 8:26 49 AM	04	*
8 26 50 AM 8 26:52 AM	02	2
8:26:58 AM 8:27:09 AM	11	ii
8:27:10 AM 8:27:14 AM		
8:27:16 AM	DE	
8:27:28 AM 8:27:29 AM	12	12
8:27:32 AM	02	æ
8:27:52 AM	16	Į6
8:28:01 AM 8:28:01 AM	09	*
8:28:13 AM 8:28:14 AM	12	ш
8 28 17 AM 8:28:18 AM	03	1
8:38 21 AM 8:28:23 AM	03	*
8 28 25 AM	02	2
8:28:28 AM	05	2
8 (8 3) AM 8 29 +5 AM	13	£3
8-76-17-AM 8-29-10-AM	23	23
E 29 17 AM E 29 19 AM	07	7
8:29:23 AM 8:29:28 AM	LS	15
8 29:39 AM 8:29:41 AM	02	2
8:29:42 AM 8:29:45 AM	03	30
8 29:45 AM 8 29 49 AM	04	(0)

8.17.25 AM	05	*
8:17:37 AM 8:17:34 AM	97	2
8:17:35 AM 8:17:37 AM	03	i
8:17:38 AM 8:17:55 AM	07	,
8:17:45 AM 8:17:47 AM	02	2
8:17:48 AM 8:17:49 AM	01	\mathbf{x}
8:17:52 AM 8:18:00 AM	68	
8:18:01 AM 8:18:03 AM	02	2
818.04 AM 818.51 AM	47	47
8:18:52 AM 8:18:57 AM	05	5
8:18:57 AM 8:19:09 AM	32	12
8:19:10 AM 8:19:13 AM	0)	3:
8 19:14 AM 8:19:15 AM	02	2
8 19:21 AM 8 19:25 AM	02	ž
8 19 28 AM 8 19 28 AM	04	k
8 19-29 AM 8 19:30 AM	01	x
a 19:31 AM a: 19:33 AM	02	2
8 19 34 AM 8:19:44 AM	19	10
8 19 44 AM 8:19:51 AM	07	7
8:19:52 AM 8:20:14 AM	32	22
8 20.15 AM 8 20 22 AM	97	2
8:20:24 AM 8:20:12 AM	os	Ä
8 30 33 AM 8 20 34 AM	03	¥
8:20:36 AM 8:20:45 AM	09	•
8 20:46 AM 8:20:47 AM	01	x
8:20:\$0 AM 8:20:\$5 AM	.05	5
8 20 56 AM 8:20:58 AM	02	ž
8:21:01 AM 8:21:12 AM	11	31
8:21:33 AM 8:21:16 AM	33	3
8.21:38 AM 8:21:45 AM	67	7
8:21:51 AM 8:21:59 AM	08	
8 22:00 AM 8:22:01 AM	01	i
8 22:06 AM 8:22:14 AM	DB	
8:22:15 AM 8:22:15 AM	00	
8:22:23 AM 8:22:29 AM	.08	
8:22:31 AM 8:22:39 AM	08	*
8:22:40 AM 8:22:45 AM	95	
8:22:46 AM 8:22:57 AM	n	11
8:22:58 AM 8:23:02 AM	04	a.
8 23:03 AM 8 23:15 AM	100	12
8 21 22 AM 8 21 24 AM	.02	2
8 23 25 AM 8 23 27 AM	as	1
8 23 30 AM 8 23 34 AM	04	9
6 19 35 AM 6 23 38 AM	03	9
8:23:39 AM 8:23:42 AM	03:	3.
8:23:42 AM 8:23:42 AM	06	14.
8:23:53 AM 8:23:55 AM	01	
8:23:58 AM 8:24:11 AM	110	10
MARKETER		

8:24:12 AM # 24 75 AM	14	14
E 24-37 AM E 24-31 AM	04	4
E 24 33 AM E 24 45 AM	12	12
8 24:46 AM 8:24:47 AM	01	1
8:24:54 AM 8:25:02 AM	08	*
8:25:03 AM 8:25:06 AM	03	
8:25:06 AM 8:25:10 AM	04	*
8 75 11 AM 8 25 12 AM	01	40
8:25 13 AM 8:25:14 AM	01	i
8:25:15 AM 8:25:17 AM	01	10
8:25:23 AM 8:25:27 AM	04	1045
8:25:28 AM 8:25:30 AM	02	
8 25-31 AM 8 25-12 AM	41	41
8 26:13 AM 8:26:20 AM	07	
8 26:21 AM 8:26:23 AM	02	,
8:26:24 AM 8:25:25 AM	02	e e
8 76:31 AM 8 75:33 AM	02	8
8.75 34 AM 8.76 42 AM	08	
825-45 AM 8.76-49 AM	04	•
8:25,50 AM 8:26:52 AM	02	
8 26 58 AM 8:27:09 AM	11	3
8:27:10 AM 8:27:10 AM	04	
8 27:14 AM 8 27:16 AM 8:27:28 AM		æ
8:27:29 AM	12	12
8 27:32 AM	02	2
8:27:48 AM 8:27:52 AM	16	16
8:28:01 AM	09	9
8:28:14 AM	1.2	100
8:28 17 AM 8 J8 L8 AM	03	1
8:28:21 AM 8:28:23 AM	03	
8:28 26 AM	02	2
8:28:28 AM 8:28:28 AM	02	2
8 78 45 AM 8 78 45 AM	13	13
E 29:10 AM	23	23
8 29:12 AM 8 29:19 AM	07	7
8:29:23 AM 8:29:38 AM	Į5	W
8:29:39 AM 8:29:41 AM	02	.2
8 29:45 AM 8 29:45 AM	03	ä
8 29 45 AM 8 29 49 AM	04	

Gap Calculation for Unsignalized Intersection Left Turn from Minor Road to 2-Lane Major Road

Intersection: Major St. N. Main Street

Minor St. Full-Access Driveway

Time Studied: Weekday P.M. Peak Hour

Date of Study: 10/8/2024

Critical Gap: 6.4
Follow-Up Time: 3

Length of Gap (seconds)	Vehicles Accomodated	Number of Gaps Observed	Total Vehicles
0 - 6.4	0		0
6.4 - 9.4	1	45	45
9.4 - 12.4	2	24	48
12.4 - 15.4	3	20	60
15.4 - 18.4	4	9	36
18.4 - 21.4	5	8	40
21.4 - 24.4	6	5	30
24.4 - 27.4	7	3	21
27.4+	8	4	32
	Vehicles Accomo	dated	312

Minimum Gap	Number of Cars
0	0
6.4	1
9.4	2
12.4	3
15.4	4
18.4	5
21.4	6
24.4	7
27.4	8

4:30:00 PM 4:30:04 PM	04		Gipt
4:30:04 PM			
4,30:06 PM	02		
4:30:13 PM 4:30:14 PM	05	1	
4:30:18 PM	04	340	
4:30:22 PM 4:30:23 PM	04	18	
4:30:25 PM 4:30:27 PM	02	2	
4:30:37 PM	10	10	
4:30:42 PM	03	3	
4:30:44 PM	02	2	
4:30:46 PM 4:30:52 PM	06	(6)	
4:30:53 PM 4:31:28 PM	35	15	
4:31:10 PM 4:31:12 PM	02	2	
431:33 PM 431:34 PM	DI	1	
4:31:41 PM 4:31:47 PM	06	60	1
4:31:48 PM 4:32:09 PM	21	31	
4:32:10 PM 4:32:15 PM	05	•	
4 32 30 PM	L4	14	1
4:32:31 PM 4:32:33 PM	02	2	
4:32:33 PM 4:32:48 PM	15	15	
4:32:49 PM 4:32:52 PM	03	200	1
4:32:53 PM 4:32:54 PM	01	13	
4:33:03 PM 4:33:05 PM	02	2	
4:33:06 PM 4:33:08 PM	02	e u	
4:33:08 PM 4:33:12 PM	04	3	
4:33 18 PM 4:33:25 PM	07	į	
4:33 26 PM 4:33:34 PM	08		
4:33:40 PM			
4 33:58 PM 4:33 59 PM	18	38	
4:34:10 PM 4:34:15 PM	11	- 311	
4:34:17 PM 4:34:21 PM	02	#1 55	
4:34:27 PM	02	2	
4 34:30 PM	02	2	
4:34:18 PM	08		
4 34 41 PM	02		
4:34:30 PM	09	:45	
4 35:00 PM	06		
4 35:09 PM 4:35:09 PM	ВО		
4:35:18 PM 4:35:20 PM	09	9	
4:35:20 PM 4:35 ZZ PM 4:35:23 PM	02	(2	
4 35 25 PM	03	i	
4:35:29 PM 4:35:34 PM	05	3	
4 33 41 PM	04	i .	
4 35 43 PM 4 35 45 PM	03	ä	
4.35 48 PM 4.35 49 PM	01	3	
4 35 55 PM 4 35 57 PM	OZ	2	
4 16 01 PM 4 36 05 PM	04		
4:36:07 PM 4:36:12 PM	05	*	
4:36 14 PM 4:36 15 PM	01	10	

		Critical	
Tiec 1	44	follow up	Icen
2 sec 2	72		1
lier 1	40	E (558)	
Sate 5	30		100
Sate 5	26		-
7 sec 7	16 1 car	- 4	
Tiec II	17 17	el plot	
	12		
10 sec 10 11 sec 11	10 2 mm	31	
11 sec 11			
12 sec 12 13 sec 13	#3 can		
14 sec 14	7		
15 sec 15	1		100
17 sec 17	1 4 cars	,	
15 sec 18	5		200
19 sec 19	4 Scars		
10 sec 20	.2		100
71 sec 21 72 sec 22	2 6 cars		
23 sec 23	2 2	- 5	-
14 sec 24	1		100
75 sec 25	17 can	,	
70 sec 26	2		
77 sec 27 28 sec 28	0		-
7 sec 25	Diff care		300
19 sec 25 10 sec 30	0	Total Care	500
11 acc 31 12 acc 32	- 0		
13 sec 23	0		
4 arc 34	0		
fisee 35	- 1		
15 prc 36	0		
8 sec 38	1		
9 sec 39	0		
0 sec 40	0		
1 mc 41	. 1		
2 sec 42 3 sec 43	0		
	0		
	0		
6 sec 46	G		
7 sec 47	0		
9 sec 45	0		
3 sec 50	0		
MC 51	0		
3ec 52	0		
sec 51	0		
sec 55	0		
sec SS	-0		
Dec 57	0		
sec 53	0		
sec 60	0		
min 61	D		

Gap Calculation for Unsignalized Intersection Left Turn from Minor Road to 2-Lane Major Road

Intersection: Major St. N. Main Street

Minor St. Full-Access Driveway

Time Studied: Weekday P.M. Peak Hour

Date of Study: 10/8/2024

Critical Gap: 6.4 Follow-Up Time: 3

Length of Gap (seconds)	Vehicles Accomodated	Number of Gaps Observed	Total Vehicles
0 - 6.4	0		0
6.4 - 9.4	1	45	45
9.4 - 12.4	2	24	48
12.4 - 15.4	3	20	60
15.4 - 18.4	4	9	36
18.4 - 21.4	5	8	40
21.4 - 24.4	6	5	30
24.4 - 27.4	7	3	21
27.4+	8	4	32
	Vehicles Accomo	dated	312

Minimum Gap	Number of Cars
0	0
6.4	1
9.4	2
12.4	3
15.4	4
18.4	5
21.4	6
24.4	7
27.4	8

4:30:00 PM	eronds	
4:30:04 PM 4:30:04 PM 4:30:06 PM	D4	
4:30:08 PM	02	
4:30:13 PM 4:30:14 PM	05	
4:30:18 PM 4:30:18 PM	04	
4 30:22 PM	04	
4:30:25 PM 4:30:27 PM	02	
4 30:38 PM	10	
4:30:41 PM 4:30:42 PM	03	
4:30:44 PM	02	
4:30:44 PM 4:30:52 PM	06	
4:30:53 PM 4:31:38 PM	35	130
4:31:30 PM 4:31:32 PM	02	
4:31 33 PM 4:31 34 PM	01	
4:31:41 PM 4:31:47 PM	06	
4.31.48 PM 4.32.09 PM	21	2
4:32:10 PM 4:32:15 PM	05	
4:32:16 PM 4:32:30 PM	14	3
4:32:31 PM 4:32:33 PM	02	8
4:32:33 PM 4:32:48 PM	L5	45
4 32:49 PM 4:32;52 PM	03	1
4:32 S4 PM	01	3
4 33 03 PM 4 33 05 PM	02	2
4 33 06 PM 4 33 08 PM	02	
4 33 08 PM 4 33 12 PM	04	
4:33:18 PM 4:33:25 PM	07	,
4:33.26 PM 4:33:34 PM	08	
4:33:40 PM 4:33:58 PM	18	18
4 33:59 PM 4:34: LO PM	11	11
4:34:15 PM 4:34:17 PM	02	2
4 34 21 PM 4 34 23 PM	02	
4.34.27 PM 4.34.29 PM		2
4 34 30 PM	02	2
4 34 39 PM 4:34:41 PM	80	
4:34:41 PM	02	2
4:34:50 PM 4:34:53 PM	09	
4 34:59 PM 4:35:00 PM	05	383
4:35:09 PM	80	*
4 35 18 PM 4 35 20 PM 4 35 22 PM	09	٠
4: 33: 22 PM 4: 33: 23 PM 4: 35: 26 PM	0z	2
	03	9
4: 15: 29 PM 4: 25: 34 PM 4: 35: 37 PM	05	3
4 35:42 PM	04	à
4 35:45 PM	03	ì
4:35:48 PM 4:35:49 PM	01	ï
4 35 SS PM 4:35:57 PM	02	2
4 36:01 PM 4 36:05 PM	04	4
4:36:07 PM 4 36 12 PM	05	ķ
4 36 14 PM 4 36 15 PM	01	1

		Follow-se	
Lies 1	44	Follow-op	tara
2 sec 2	72	- Bira	(M)
Same 3	49		-
A sec a	16		-
Sanc S	25	100	+
Suic &	18	_	-
7 ME 7	15 1 sar	1	
B MC B	17	-	7
3 sec. 5	12	-	-
10 to 10	10 1 rans	3	
Li sec II	5		
12 sec 12	9		-
13 sec (13)	9700	x	-
14 sec 14	#13can	-	1
15 sec 15	- 5	-	-
15 sec 16			-
17 sec 17	1 (car)	-	-
18 sec 18		-	-
19 sec 19	5 43 cars		-
20 sec 20	2	-	-
21 sec 21	2		-
72 sec 22		-	
23 sec 23	2 5 cms	3	
74 sec 74	- 1	100000	
15 see 25	- 1		
75 sec 26	1 Jean	- 1	
	- 2		
77 sec 27	9		
	O II carso	4	
29 arc 30 30 arc 30	1	1000	-
	0	Total Cars	3
11 arc 31	0		
13 sec 33	- 9		
14 18C 34	0		
15 sec 35			
Sarc 36	0		
7 arc 37	1		
18 arc 33	0		
9 sec 20	0		
0 sec 40	0		
Unic (L			
2 sec 42	- 3		
13 sec 43			
4 prc 44	0		
3 sec 45	- 3		
5 tec 46	6		
7 sec 47	0		
8 arc 48	0		
9 anc 49			
	O		
0 sec 50	0		
sec 52	0		
3 sec 53	0		
	_ 9		
	6		
sec 55			
sec 55	- 0		
sec 56 sec 56	. 0		
sec 56 sec 56 sec 57	0		
sec 55 sec 56 sec 57 sec 57	0		
sec 56 sec 56 sec 57	0		

4-15-12 PM 4-15-12 PM 4-15-12 PM 4-15-12 PM 4-15-12 PM 4-15-13 PM 4-15-15 PM
4-15-15 PM
4-15-6-6-PM
4-13-55 FM 4-13-65 FM 4-13-70 FM
4:37:00 PM 4:37:00 PM 6:37:00 PM 6:38:00 PM 6:40:00 PM
437.40 PM 437.40 PM 437.45 PM 437.45 PM 437.45 PM 437.57
6. 11-6. 2 pm 4.37-4.6 pm 4.37-4.6 pm 4.37-5.6 pm 4.37-5.6 pm 4.37-5.1 pm 61
#137.41 PM #137.44 PM #137.45 PM #137.47 PM #137.47 PM #137.47 PM #137.57 PM #138.00 PM #137.57 PM #138.00 PM #137.57 PM #138.00 PM #138.11 PM #138.11 PM #139.13 PM
4.137-16 PM 4.137-17 PM 4.138-17 PM 4.138-
4:37:49 PM 4:37:51 PM 4:37:52 PM 4:37:52 PM 4:31:52 PM 4:40:55 PM
4-19-152 PM 4-19-1
38.00 PM # 14.14 PM # 14.14 PM # 14.14 PM # 14.14 PM # 15.14 PM # 15.15 PM
Mile PM
4.180.19 PM 4.180.12 PM 4.180.13 PM 4.180.
4-19-13 PM 4-19-15 PM
4.39.37 PM 4.39.32 PM 4.39.32 PM 4.39.32 PM 4.39.32 PM 4.39.32 PM 4.39.32 PM 4.39.33 PM 4.40.35 PM
4-19-12 PM
4-19-12 PM 4-19-12 PM 4-19-13 PM
4-19-12 PM 4-19-12 PM 4-19-12 PM 4-19-12 PM 4-10-13 PM
4-19-15 FMA
4-0-0-5 PM 4-0-1-0-5 PM
4-01-05 PM
4 - 41-05 PM 4 - 41-05 FM 4 - 41-05 FM 4 - 41-05 PM 4 - 41-15 PM 4 - 41-15 PM 4 - 41-05 PM 5 - 41-44-13 PM 4 - 41-05 PM 5 - 5 5 - 44-44-13 PM 6 - 44-45 PM 6 - 5 5 - 44-44-13 PM 6 - 44-45 PM 6 - 5 5 - 44-44-13 PM 6 - 44-45 PM 6 - 5 5 - 44-44-13 PM 6 - 44-45 PM 6 - 4
4-11-07 PM
4-11.0 PM
4 - 2-2-3 PM 4 - 4-2-2-3 PM 4 - 4-2-1-1 PM 4 - 4-3-2-1 PM 4 - 4-3-2-1 PM 4 - 4-3-2-1 PM 4 - 4-3-2-1 PM 4 - 4-3-3-1 PM 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -
4-02-10 PM 4-02-11 PM 4-02-12 PM 4-02-12 PM 4-02-13 PM 4-02-14 PM 4-02-14 PM 4-02-14 PM 4-02-14 PM 4-02-14 PM 4-02-15 PM
4-42-12 PM 4 42-33 PM 4-42-30 PM 4 42-34 PM 4 4-2-34 PM 4 4-2-35 PM 4-42-24 PM 18 18 4-42-27 PM 4-43-22 PM 4-31-22 PM 4-31-22 PM 4-31-22 PM 4-31-22 PM 4-31-22 PM 4-31-22 PM 4-31-32 PM 4-31-32 PM 4-31-33 PM 4-43-35 PM 4-31-35 PM 4-4-35 PM 4-4-35 PM 5-4-4-35 PM 5-5 5 6-4-4-35 PM 5-5 6-4-4-35 PM 5-5 6-4-4-4-35 PM
4-02-14 PM
4 42:43 PM 4 42:41 PM 4 42:41 PM 4 42:59 PM 18 18 4 43:50 PM 18 18 4 43:10 PM 4 43:12 PM 4 43:12 PM 4 43:12 PM 4 43:12 PM 18 18 18 18 18 18 18 18 18 18 18 18 18
4:42:34 PM 4:42:38 PM 4:42:38 PM 4:42:38 PM 4:43:02 PM 4:43:30 PM 4:43:30 PM 4:43:30 PM 4:43:30 PM 4:43:30 PM 4:43:33 PM 4:43:33 PM 4:43:33 PM 4:43:33 PM 4:43:33 PM 4:43:33 PM 4:43:32 PM 4:43:32 PM 4:43:32 PM 4:43:32 PM 4:43:33 PM 4:43:33 PM 4:43:33 PM 4:43:33 PM 4:43:33 PM 4:43:30 PM 4:44:30 PM 6:44:30 PM 6:44:44:30 PM 6:44:44:30 PM 6:44:44:30 PM 6:44:44:30 PM 6:44:44:30 PM 6:44:44:30 PM 6:44:44:45 PM 6:44:44:30 PM
4-42-41 PM 4 4-32-9 PM 18 18 4-43-20 PM 18 18 4-43-20 PM 18 18 4-43-20 PM 4-43-32 PM 4-43-32 PM 4-43-32 PM 4-43-33 PM 4-43-33 PM 4-43-33 PM 4-43-33 PM 4-43-33 PM 4-43-33 PM 4-44-33 PM
4-43-02 PM 4-43-20 PM 18 18 4-43-20 PM 4-43-22 PM 02 2 4-43-22 PM 05 5 4-43-22 PM 05 18 4-43-23 PM 4-43-23 PM 18 13 4-43-33 PM 18 13 4-43-33 PM 18 13 4-44-07 PM 18 13 4-44-07 PM 18 14 4-44-07 PM 18 15 4-44-07 PM 18 18 18 4-44-07 PM 18 18 4-44-07 PM 18 18 4-44-07 PM 18 18 4-44-07 PM 18 4-44-07 PM 19 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
4-43-20 PM 4-43-22 PM 92 2 4-43-25 PM 95 5 4-43-31 PM 96 5 4-43-32 PM 91 8 4-43-32 PM 91 8 4-43-33 PM 4-43-33 PM 4-43-33 PM 3-43-33 PM 3-44-33 PM 3-44-33 PM 4-44-33 PM
4-43:25 PM 4-43:30 PM 6-43:31 PM 6-43:31 PM 6-43:32 PM 6-43:33 PM 6-43:33 PM 18 13 4-44:07 PM 3-44:07 PM 5-44:07 PM 5-54:07 PM 5-54:
4 43:31 PM 4 43:00 PM 4 43:00 PM 4 43:05 PM 18 18 18 19 13 13 13 14:40 0F PM 18 18 19 13 14:40 0F PM 18 18 18 18 18 18 18 18 18 18 18 18 18
4 43:53 PM 4 43:53 PM 13 13 4 44:53 PM 14 13 13 4:44:07 PM 5 40 D/PM 13 23 4:44:33 PM 4 44:22 PM 01 1 4:44:23 PM 4-44:23 PM 05 5
4.41.53 PM 4.41.06 PM 13 3 4.44.07 PM 4.44.03 PM 4.44.32 PM 4.44.33 PM 4.44.33 PM 4.44.33 PM 4.44.33 PM 4.44.33 PM 4.44.33 PM 4.44.33 PM
a ALGOFPM 13 13 0:44.07 PM 0:44.07 PM 0:44.03 PM 0:44.32 PM 0:44.33 PM 0:44.43.38 PM 0:44.43.38 PM 0:44.43.38 PM 0:44.43.38 PM 0:44.44.39 PM
4:44.30 PM 23 23 4:44.31 PM 4 44.32 PM 05 5 5 4:44.33 PM 4.44.38 PM 05 5
4 44:32 PM 01 1 4:44:33 PM 4:44:38 PM 05 1 4:44:38 PM
4:44 38 PM 03 6
4 44:49 PM 10 10
4.44.50 014
4:44:50 PM 4:44:54 PM 04 4
4:44:54 PM 4:44:56 PM 01 1
4:44:56 PM
4 45:00 PM G# #
4.45:00 PM 4:45:00 PM 4:45:03 PM 03 8
4 45:00 PM 0# 4 4:45:00 PM
4.45:00 PM 4.45:00 PM 4.45:03 PM 03. 8 4.45:04 PM

4 45:16 PM 4:45:30 PM	. 92	3
4 45:40 PM	10	10
4:45:42 PM 4:45:43 PM	01	
4:45:55 PM	12	12
4 45 15 PM 4 45 17 PM	10	31
4,45,58 PM 4:46 00 PM	02	2
4:46:01 PM 4:46:18 PM	17	17
4 46 L9 PM 4:46:22 PM	03	3
4:46:22 PM 4:46:36 PM	14	14
4 14 12 PM	05	\$
4:46 45 PM 4:45:47 PM	02	20
4:46:47 PM 4:86:56 PM	09	9
4:40:57 PM 4:40:58 PM	01	10
4 44:59 PM 4 16:59 PM	00	D
4 17:01 PM 4 17:05 PM	05	
4 47:10 PM 4:47:35 PM	25	25
4 47:37 PM 4:47:42 PM	05	
4:47:43 PM 4 47:44 PM	01	,
4 47 45 PM 4 47 47 PM	02	2
4 47-47 PM		
4,47,50 PM 4,47,50 PM	03	3
4 47:52 PM	ot	19
4:47 54 PM	02	1
4:48 11 PM	07	3
4:48 25 PM 4 48 25 PM	n	11
4:48:40 PM	12.	12
4 48 SZ PM	12	12
4 18 15 PM 4 18 55 PM	03	3
6 40 25 PM 6 49 28 PM	03	1
4 49 33 PM	02	2
4 10 37 PM 4 10 17 PM	10	10
4 49 47 PM 4 49:50 PM	03	×
4:49 51 PM 4 49 56 PM	05	8
4:49:57 PM 4:50:07 PM	10	10
4:50 10 PM 4:50:22 PM	12	12
4 50 23 PM 4 50 40 PM	17	17
2 50 40 PM 4 50 43 PM	03	16
4.50:50 PM		
4 50 52 PM 4 51 08 PM	02	(1)
4:51:10 PM 4:51:11 PM	02	1
4 S1 21 PM 4:51 21 PM	10	10
4:51 26 PM 4:51 27 PM	os	1
4 51:28 PM 4 51 29 PM	01	i.
4 \$1:35 PM	06	
4 51 38 PM 4 51:44 PM	06	
4:51 47 PM 4 52 10 PM	23	n
4 52 11 PM	0.5	2
4 52 15 PM	01	1
4 57 19 PM 4 57 23 PM	04	*
4 52 32 PM	08	

*

	4:34:16 PM 4:36:18 PM	02	32
	4:35:27 PM 4:36:54 PM	92	1
	4 35 45 PAR 4 35 45 PAR	GF.	7
	4:36:51 PM 4:36:55 PM	04	*
	4:36:56 PM 4:37:00 PM	04	4
ė5	4;37:01 PM 4;37:09 PM	CB	(4)
	4:37:40 PM 4:37:42 PM	103	2
	4:37:43 PM 4:37:44 PM	01	<u>(4</u>
	4:37.46.PM 4:37.47.PM	01	19
	4:37:49 PM 4:37:51 PM	02	3
	4:37:52 PM 4:37:57 PM	105	30
	4:38:00 PM 4 38 14 PM	14	14
	4 16 15 PM 4:18 15 PM	0)	3
	4 38 19 PM 4 16 22 PM	03	3
	4:29:13 PM 4:22:16 PM	03	3):
	4:39 17 PM 4:39 19 PM	02	3
	4:39:23 PM 4:39:24 PM	οι	ä
	4:39:27 PM 4:39:31 PM	94	
	4 39 32 PM 4 39:35 PM	03	361
	6 40 43 PM 6 40 46 PM	03	(4)
	4 40 53 PM 4 40 55 PM	02	3
	e 40,55 PM e 41,04 PM	09	9
	4 41 05 PM	02	
	4 41 08 PM 4 41:10 PM	02	12
	4:41:34 PM 4 42:03 PM	29	29
	4 42:08 PM 4:42:09 PM	01	3:
	4.42 10 PM 4.42 13 PM	03	
	6.42.13 PM 6.42.14 PM	OL	1
	4 12:30 PM 4 12:31 PM	04	((4))
	4:42 34 PM 4:42 38 PM	01	*
	4 42 41 PM 4:42:59 PM	1.0	18
	4:43:02 PM 4:43 20 PM	1.6	18
	4 13:20 PM 4:43:22 PM	02	2
	4 13:25 PM 4 13:30 PM	05	5
	4-43-31 PM 4-43-32 PM	(01)	3:
	4:43;40 PM 4:43;53 PM	u	13
	4:43 53 PM 4:44:06 PM	u	13
	4;44;07 PM 4 44;30 PM	23	29
	4 44:31 PM 4:44:32 PM	ot	æ
	4:44:33 PM 4:44:18 PM	05	
	4.44.39 PM 4.44.49 PM	10	10
	4 44 50 PM 4 44 54 PM	04	100
	4 44:54 PM 4:44:56 PM	02	125
	4:44:56 PM 4 45 00 PM	04	: 40
	4:45:00 PM 4:45:03 PM	01	\$8
	4:45:04 PM 4:45 Q6 PM	C)	2
	4:45:06 PM 4:45 L2 PM	06	Is:
	4 45:14 PM		

4:45:16 PM 4:45:30 PM	02	2	
4 45:40 PM 4 45:41 PM	10	10	
4:45:42 PM 4:45:43 PM	01	1:	
4:45 SS PM	12	12	
4:45.57 PM	01	()	
4 45 58 PM 4 46 00 PM	02	2	
4:46:01 PM 4:46:18 PM	17	17	
4:46:19 PM 4:46:22 PM	03	: 10	
4:46:22 PM 4:46.36 PM	14	14	
4.44.37 PM 4.46.42 PM	05	5	
4:44:45 PM	02	2	
4:45:47 PM 4:46:56 PM	09	(91)	
4:46:57 PM 4:46:58 PM	OL	:3	
4 46 S9 PM 4 46 S9 PM	00	0	
4,47.01 PM 4,47.05 PM	05		
4.47 10 PM 4.47:35 PM	25	25	
4 47 37 PM 4:47:42 PM	os	36	
4 47 43 PM 4:47:44 PM	01		
4:47:45 PM 4 42:47 PM		30	
4 47:47 PM	D2	2	
4 47:50 PM 4:47 50 PM	01	*	
4 47 51 PM	01	T.	
4 47 54 PM	02	2:	
4:48:11 PM	07	7.	
4:48 25 PM 4:48 25 PM	13	u	
4 48 37 PM	1.2	12	
4:48 40 PM 4:48 52 PM	12	12	
4 48 56 PM	03	100	
4:49:25 PM 4 49 28 PM	03	1	
4 49 33 PM	02	1	
4 ++ 17 PM	ro	10	
4 10 47 PM 4 17 50 PM	03	90	
4 49:SL PM 4:49 56 PM	os	(5)	
4 49:S7 PM 4:50:07 PM	10	10	
4:50:10 PM 4:50:22 PM	1.2	12	
4 50:23 PM 4:50 40 PM	17	17	
4 50 40 PM 4 50:43 PM	03	3	
4 50 10 PM 4 50 12 PM	02	ž	
4.51 :18 PM 4.51 :10 PM	02		
4-51-11-PM 4-51-11-PM 2-51-21-PM		×	
4 51:21 PM		10	
4 S1:27 PM	OS	8	
4 51:28 PM	DĹ	*:	
4 51:35 PM 4:51 38 PM	06		
4 51:44 PM	G6		
4:52:10 PM	23	21	
4 52 11 PM 4 52 13 PM	02	27	
4 52 14 PM 4 52:15 PM	Of	Ĭ.	
4 52 19 PM 4 52 23 PM	04		
4:5Z 24 PM 4 5Z 32 PM	OB		

4:52:36 PM 4:52:42 PM	06	ş:
4 52:42 PM 4:52:46 PM	91	
4:53:00 PM 4:53:06 PM	04	ě
4:54:29 PM 4:54:35 PM	Ok.	8
4:54:35 PM	02	5 E
4.54:37 PM 4.54:38 PM		
4 54:42 PM 4:55:51 PM	04	*
4:56:05 PM	14	14
4:36:08 PM	63	2
4:56:09 PM 4:56 31 PM	22	12
4:56:31 PM 4:56:43 PM	12	12
4:56:44 PM 4:56:47 PM	031	30
4 56 50 PM 4 56 54 PM	04	*
4:57:00 PM 4:57:02 PM	62	3
4:57:05 PM 4:57:13 PM	CO.	
4:57:14 PM 4:57:15 PM	01	ı
4 57:16 PM		
4:57:17 PM 4:57:17 PM	01	30
4:57:30 PM 4:57 31 PM	13	u
4:57:35 PM	04	4
*25 42 PM	06	•
4:57.47 PM	OL.	•
4:57:56 PM	05	×
4:57:57 PM 4:58:05 PM	08	
4:58:05 PM 4:58:09 PM	O4	ž
4:58:35 PM 4:58:40 PM	05	5
4:58 46 PM 4:58 49 PM	03	3
4:58 52 PM 8:58 54 PM	02	2
4.58 35 PM		
4:59:05 PM 4:59:06 PM	10	10
4:59:10 PM	04	
4:59:12 PM 4:59:12 PM	01	2
4 59 15 PM	01	3.
4:59 16 PM 4:59 18 PM	02	2
4:59:19 PM 4:59:32 PM	13	13
4:59:33 PM 4:59:35 PM	02	2
4:59:18 PM 4:59:41 PM	03	(3)
4:59 46 PM 5:00:06 PM	20	20
5:00:06 PM 5:00:08 PM	02	-
5:00.10 PM 5:00.15 PM	ds	- 3
5:00:18 PM		
S :00:23 PM S :00:25 PM	05	3
5 00:39 PM 5 00:30 PM	04	3
5 00:34 PM	04	3
5:00:36 PM 5:00:41 PM	05	
\$:00:43 PM 5:00:48 PM	05	5
5:00:49 PM 5:00:57 PM	08	
S:00:59 PM S:01:03 PM	94	4
5:01:05 PM 5:01:13 PM	08	
5:01:13 PM 5:01:16 PM	91	
5:01 16 PM 5:01 18 PM	62	2
5:01:20 PM	10	10
5:01:30 PM	(10)	(40)

5:01:34 PM 5:01:41 PM	07	*
5.01.50 PM 5.01.56 PM	06	6
5:01;57 PM 5:02:16 PM	19	(19)
5:02 22 PM 5:02 31 PM 5:02 38 PM	09	
5:02:40 PM	02	2
5:02:42 PM 5:02:44 PM	02	2
3:02:45 PM 3:02:46 PM	01	Œ
5:02:47 PM 5:02:50 PM	03	31
\$:02:50 PM 5:02 53 PM	03	3
5 02:53 PM 5:02:55 PM	02	1
5:02:59 PM 5:03:12 PM	13	n
5:03:12 PM 5:03:31 PM	19	ъ
5:03:32 PM 5:03:38 PM	06	35
5:03:43 PM 5:04:09 PM	26	26
5:04 10 PM 5:04 13 PM	03	9
5:04:14 PMA 5:04:16 PMA	02	1
5 04:17 PM 5 04:18 PM	10	\mathfrak{r}
5:04:19 PM 5:04:24 PM	OS	5
\$:04:25 PM 5 04:26 PM	01	i
5:04:25 PM 5:04 27 PM	01	1
5:04:32 PM 5:04:35 PM	03	i
5 04 36 PM 5:04:37 PM	01	10
5 DE 18 PM 5 DE 39 PM	01	$\widetilde{\mathfrak{t}_{i}}$
5 D4 40 PM 5 D4 41 PM	01	10
5:04 44 PM 5:04 50 PM	06	
5 04:51 PM 5 04:53 PM	02	2
S:04:54 PM 5 04:56 PM	02	12
S:04 57 PM S:05:07 PM	10	10
5:05 08 PM 5:05 L2 PM	04	4
5:05:12 PM 5:05:26 PM	14	14
5 05:27 PM 5 05:28 PM	01	3.
5:05:29 PM 5:05:41 PM	12	17
\$ 06:00 PM \$ 06:06 PM	EQ.	\tilde{j}
S:06:07 PM S 06 t0 PM	03	3
5:06:11 PM 5:06:13 PM	02	2
5:06:14 PM 5:06:15 PM	01	3 1:
5:06:16 PM 5:06:22 PM	06	š
5:06:25 PM 5:06:25 PM	02	2
5:06:28 PM 5:06:43 PM	15	ıs
5 06 45 PM 5 06 17 PM	02	2
5.00 48 PM 3.02.00 PM	12	u.
\$ 07 02 PM \$ 07 05 PM	03	ř.
5.07.06 PAN 5.07.08 PM	02	
5 07:13 PM 5 07:16 PM	03	a
5:07 17 PM 5 07 21 PM	D4	
5:07 22 PM 5:07 33 PM	11	11
5:07 34 PM 5:07 18 PM	04	
\$ 07 39 PM		

4:52:36 PM 4:52:42 PM	- 06	8	
4:52:42 PM 4:52:46 PM	04	40	
4:53:00 PM 4:53:06 PM	06	6	
4:54:35 PM 4:54:35 PM	106	E	
4.54.35 PM 4.54:37 PM	02	ž.	
4:54:38 PM 4:54:42 PM	04	#:	
4:55:51 PM 4:56:05 PM	14	14	
4:56:06 PM 4:56:08 PM	92	2	
4:56:09 PM 4:56:31 PM	22	n	
4:56:31 PM 4:56:43 PM	n	12	
4.54 44 PM 4.54 47 PM	01	31	
4:56:50 PM 4:56:54 PM	94	×	
4:57:00 PM 4:57 D2 PM	07	ì	
4:57:05 PM 4:57:13 PM	08		
4:57:14 PM 4:57:15 PM	81	5° 10	
4:57:13 PM 4:57:17 PM	01	10	
4:57:17 PM 4:57:17 PM	13	13	
4:57:30 PM 4:57:31 PM 4:37:35 PM	D4	1.5	
4:57:36 PM 4:57:42 PM	06	Ŷ	
4:57:42 PM 4:57:43 PM 4:57:47 PM	04	*	
4:57:47 PM 4:57 48 PM 4:57 56 PM	08)	ì	
4:57 57 PM			
4:58:05 PM	08	ž	
4:58:09 PM 4:58:35 PM 4:58:45 PM	05	5	
4:58:40 PM 4:58:40 PM 4:58:40 PM	03	,	
45852PM 45852PM 458542PM			
4:58:55 PM	02		
4:59:05 PM 4:59:06 PM	10	10	
4:59:10 PM 4:59:10 PM	O4		
4:59:12 PM 4 59:12 PM	02	2	
4:59 15 PM	01	3 x 8	
4:59:18 PM 4:59:39 PM	03	2	
4:59:33 PM	13	13	
4:59:35 PM 4:59:38 PM	01	2	
4:59:41 PM 4:59:46 PM	0)	3	
5:00:06 PM 5:00:06 PM	20	10	
5:00:08 PM	02	2	
\$ 00 10 PM \$ 00 15 PM	os	3	
5:00:18 PM 5:00:23 PM	05	.5	
5:00:25 PM 5:00:29 PM	04	34	
5 00:30 PM 5:00:34 PM	Q4	29	
5:00:36 PM 5:00 41 PM	05	3	
5:00:43 PM 5:00:48 PM	01		
5:00:49 PM 5:00:57 PM	08	**	
5 00 39 PM 5 01 03 PM	04	34)	
5:01:05 PM 5:01:13 PM	08		
3:01:13 PM 5:01:16 PM	0)	3	
5:01:16 PM 5:01:18 PM	02	2	
5 01 30 FM	10	10	

5:01:34 PM			
5:01:41 PM 5:01:50 PM	07	19	
5:01:56 PM 5:01 57 PM	06		
5:02:16 PM 5:02:22 PM	19	19	
5:02,31 PM	09	,	
5:02:40 PM	02	1	
5:02:45 PM	02	1	
5:02:46 PM 5:02:47 PM	01	*	
5:02:50 PM 5:02:50 PM	03	1	
5:02:53 PM	03	3	
5 02:51 PM 5 02:51 PM 5:02:59 PM	02	2	
5:03:12 PM 5:03:12 PM	13	n	
5:03:31 PM	19	19	
5:03:32 PM 5:03:38 PM	05		
5.03.43 PM 5.04.09 PM	26	26	
5:04:10 PM 5:04:11 PM	03		
5:04:14 PM 5:04:16 PM	02	2	
5:04:17 PM 5:04 18 PM	01	9	
5:04:19 PM 5:04:24 PM	05	5	
5:04:25 PM 5:04:26 PM	01	34	
5:04:26 PM 5:04:27 PM	DĪ		
5:04:32 PM 5:04:35 PM	03	3	
5:04:36 PM 5:04:37 PM	01	(8)	
5:04 38 PM 5:04:39 PM	01		
5:04:40 PM 5:04 41 PM	01	30	
5:04:44 PM 5:04 50 PM	06	6	
5:04:51 PM 5:04:53 PM	02	20	
S:04:54 PM S:04:56 PM	02	ï	
\$:04:57 PM \$:05:07 PM	LO	10	
5:05:08 PM 5:05:12 PM	04	14	
\$ 05-12 PM \$ 05-26 PM	14	14	
5:05:27 PM 5:05:28 PM	ΟL	The state of	
5:05:29 PM 5:05:41 PM	12	12	
5:06:03 PM 5:06:06 PM	03	1	
\$:06:07 PM 5 06:10 PM	03	9	
5:06:11 PM 5:06:13 PM	02	2	
5:06:14:PM 5:06:15:PM	01	9	
5 06 16 PM 5 06 22 PM	06	4	
S 06 23 PM 5:06:25 PM	02	9	
5:06:25 PM 5:06:28 PM 5:06:43 PM	02 LS	iš iš	
5 06 45 PM			
5:06:47 PM 5:06:48 PM	02	9. 12.	
5:07:00 PM 5:07:02 PM	12	12	
5:07 05 PM	03	8	
5:07 D8 PM 5:07 13 PM	02	2	
5 07 16 PM 5:07:17 PM	03	¥	
5:07 21 PM 5:07:22 PM	04	*	
5 07:33 PM 5:07 34 PM	11	п	
5 07 18 PM 5:07 39 PM	04	i.	
-1			

5 07:40 PM	01	1	
5 07 41 PM 5 07:42 PM	01	3	
S 07:42 PM S 07:52 PM	10	10	
S 07:53 PM S 08:08 PM	15	15	
5:08:09 PM 5:08:11 PM	02	2	
5:08:12 PM 5:08:14 PM	62	2	
5:08:15 PM 5:08:24 PM	09	9.	
5:08:24 PM 5:08:29 PM	95	5	
SIGN 30 PM SIGN 18 PM	OB.	ï	
5 CB 15 PM 5 CB 42 PM	03	3	
5:08 46 PM 5:08 49 PM	01	3	
5:08:57 PM 5:09:00 PM	01	3	
5:09:02 PM 5:09:06 PM	04	16	
5:09:08 PM 5:09:11 PM	01	i	
5:09:12 PM 5:09:21 PM	09	9	
5-09:21 PM 1-09:18 PM	07		
5:09 28 PM 5:09:49 PM	21	21	
5 10:00 PM 5:10:05 PM	05	5	
5 10:06 PM 5:10:06 PM	00		
5 10:07 PM 5 10 13 PM	06	4	
5:10:13 PM 5:10:20 PM	01	2	
5:10:21 PM 5:10:33 PM	02	:2	
5:10:23 PM 5:10:27 PM	D4	Ä	
5:10:33 PM 5:10:36 PM	01	3	
5:10:37 PM 5:10:39 PM	02	2	
5 10:40 PM 5:10:44 PM	D4	3	
5110:44 PM 5:10:55 PM	:317	11	
5 10:56 PM 5 11:18 PM	22	22	
\$:11:20 PM \$:11:27 PM	07	,	
5:11:78 PM 5:11:32 PM	04	4	
5:11:33 PM 5:11:35 PM	02	20	
5:11:59 PM 5:12:01 PM	02	2	
5:12:02 PM 5:12:03 PM	91	(4)	
5:12:07 PM	91	(1)	
5 12 14 PM 5 12 14 PM 5 12 33 PM	19	19	
5:12:34 PM 5:12:37 PM	0)		
S 12:40 PM	01	,	
5:12:43 PM 5:13:29 PM	01		
S:13:30 PM S:13:32 PM			
5:13:34 PM 5:13:38 PM	01	4	
5 13:42 PM			
5 13:15 PM 5:13:50 PM	07	- 38	
5:13:52 PM	- 61		
5 13:39 PM 5:14:00 PM	67		
5:14:19 PM	18	18	
5:14:23 PM 5:14:24 PM	04	10 12	
5 14:42 PM 5:14:59 PM		18	
5:15:04 PM 5:15:05 PM	65	8	
5:15:08 PM	03	30	

5:15:02 PM 5:15:22 PM	14	14
5:15:24 PM 5:15 32 PM	08	
S 15:34 PM S:15:37 PM	03	3
\$:15_38 PM 5=L5:40 PM	02	2
5:15:40 PM 5:15:43 PM	03	ï
5-15-44 PM 5-15-59 PM	15	15
1:18:05 PM 5:16:17 PM	12	12
\$:16:31 PM \$:16:42 PM	an:	.11
\$:16 43 PM \$:16 55 PM	12	12
5:16:56 PM		
5:17 04 PM 5:17 64 PM 5:17 06 PM	08	
5:17:10 PM	05	*
5:17:12 PM 5:17:13 PM	20	1
5:17:14 PM 5:17:16 PM	01	10
5 17:29 PM 5 17:55 PM	13	13
5:17:57 PM	02	
3.17.55 PM 5.18.03 PM	04	4
S 18:07 PM 5 18:13 PM	06	161
5 18 14 PM 5 18:23 PM	09	9
5 18:23 PM 5:18:43 PM	20	20
5:18 44 PM 5:18:52 PM	08	9
5:18 53 PM 5 18 57 PM	04	4
5 18 18 PM 5 18 19 PM	01	×
5 18 19 PM 5 19:07 PM	0.8	
5:19:07 PM	41	41
5:19 49 PM 5:19:53 PM	04	4
5 19:55 PM 5 L9 57 PM	02	£
5°19'57 PM 5:20:01 PM	04	
5:20:01 PM 5:20:04 PM	03	ï
5 20:05 PM 5:20:10 PM	05	60 80
5:20:10 PM 5:20:11 PM 5:20:15 PM	05	*
3-20-17 PM		
\$170-18 PM \$:20:19 PM	OT	E
5:20:36 PM 5:20:40 PM	17	:17
5:20:47 PM 5:21:00 PM	07	,
5:21:02 PM 5:21:11 PM	02	3
5 21:13 PM 5 21:14 PM	DZ	1
5:21:17 PM	03	Э.:
5 21 21 PM	03	3
\$ 21:25 PM \$ 21:25 PM	02	9
5.21.25 PM 5.21.34 PM	09	9
5 21:38 PM 5 21 45 PM	07	7
5 22:08 PM 5:22:11 PM	03	3.
5 22 19 PM 5 22 26 PM	07	,
5:22 27 PM 5:22 30 PM	03	9
\$122:31 PM \$122.31 PM	00	ò
5 22:36 PM 5 22 37 PM	01	E
\$:22 38 PM 5 22 41 PM	03	í
5:22:42 PM 5:22:56 PM		14
5:22 57 PM 5 23:04 PM	07	300 300
	-	

5.07 10 PM	Ot.	Ç.
5:07:41 PM 3:07:42 PM	O1	10
5:07:12 PM 5:07:12 PM	10	10
5-07-53 PM 5-08-08 PM	15	15
5:08:09 PM 5:08:11 PM	03	2
5:08 12 PM 5:08 14 PM	01	2
5:08:15 PM 5:08:24 PM	09	(6)
5:08:24 PM 5:08:29 PM	05	153
5:08 30 PM 5:08 38 PM	O8	
5:08:19 PM 5:08:42 PM	03	3
5:08:46 PM 5:08 49 PM	03	3 0
5:00 57 PM 5:09:00 PM	03	3 2
5:09:02 PM 5:09:06 PM	04	141
\$:09:08 PM \$:09 11 PM	03	1
5:09:12 PM 5:09:21 PM	09	
5.09:21 PM	07	5) #1
5:09:28 PM 5:09:28 PM 5:09:49 PM	20	
5:10:00 PM	21	21
5:10:05 PM 5:10:06 PM	95	£:
5; L0:06 PM 5=L0:07 PM	00	
5:10:13 PM 5:10:13 PM	06	9
5-10:20 PM	07	2
5-10-28 PM	62	¥:
5:10:27 PM 3:10:27 PM	04	*
\$ 10.13 PM \$:10.16 PM	03	1
5:10:37 PM 5:10:39 PM	02	2
5:10:40 PM 5:10:44 PM	04	E
5 10:44 PM 5 10:55 PM	33	11
5:10:56 PM 5:11:18 PM	22	22
S:11-20 PM S:11:27 PM	07	9
\$111-28 PM \$11-32 PM	D6	#
5:11:33 PM 5:11:35 PM	92	2
5:11:59 PM 5 12:01 PM	.02:	2
5:12:02 PM 5:12:03 PM	01.	7
5:12:07 PM 5:12:08 PM	01	
5 12:14 PM 5 12:33 PM	19	19
5-12-34 PM 5-12-37 PM	03	¥
5:12:40 PM 5:12:43 PM	.03	j
5:13:29 PM 5 13 30 PM	01	
5:13:32 PM		
5 13:34 PM 5:13:18 PM	0.3	
5:13:42 PM 5:13:42 PM 5:13:43 PM	04	
\$-13-187M \$-13-507M \$-13-527M	07	8
\$-13-52 PM	01	2
1/13/39 PM	07	7
S 14 00 PM Scientific S 14 19 PM	18	18
5-14-19 PM 1-14-23 PM	D4	я
5:14:24 PM	110	18
5-10-39 PM 5:15-04 PM	05	3
5 15 05 PM	01	9

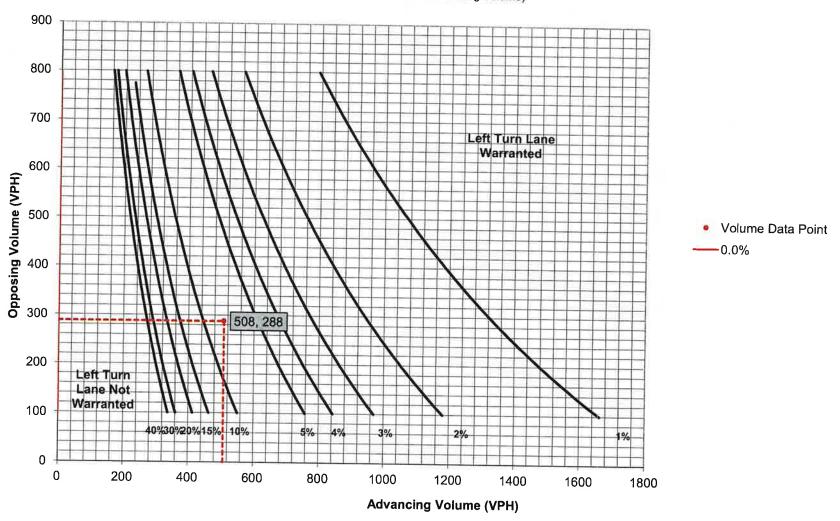
5.15-22-PM 5.15-22-PM	Į4	14	
S 15:24 PM 5:15:32 PM	08	31	
5-15_34 PM 5:15:37 PM	03	:3	
5:15:18 PM 5:15:40 PM	02	2	
5 15:40 PM 5 15:43 PM	03	3	
5.15.44 PM 5.17.55 PM	15	15	
5 1E 05 PM 5 1E 17 PM	L2	12	
5 L5:31 PM 5:16:42 PM	11	11	
S 16 43 PM S:16:55 PM	12	12.	
5:16 56 PM 5:17 D4 PM	08		
5-17-04 PM 3-17-03 PM	05	š	
5:17:10 PM 5:17:12 PM	02	- S - S	
5-17-13 PM			
5:17:14 PM 5:17:16 PM	01	18	
5 17 29 PM 5 17 55 PM	13	n	
5:17:57 PM 5:17:59 PM 5:18:03 PM	02	2	
5:18:07 PM	04		
5:18:13 PM 5 Lift 14 PM	06		
5 18:23 PM 5:18 23 PM	99	99	
5-18 43 PM	20	50	
5 18:52 PM	OB		
5 18 53 PM 5:18:57 PM	04	29	
5 18 50 PM	01	\mathfrak{a}	
5: 18:59 PM 5: 18:07 PM	08		
5.19.07 PM 5.19.48 PM	41	41	
5:19:49 PM \$ 19:53 PM	04		
5:19:55 PM 5:19:57 PM	02	z	
5 19:57 PM 5:20:01 PM	D4		
\$ 20 01 PM 5 20 04 PM	03	ï	
5:20:05 PM 5:20:10 PM	05	5	
5:20:11 PM 5:20:15 PM	04	20	
\$ 20:17 AM \$ 20:18 PM	01	1	
\$ 20:19 PM \$:30:16 PM	17	17	
5:20:40 PM 5:20:47 PM			
5:21:00 PM	07		
5:21 02 PM 5:21:11 PM	02		
5:21 L3 PM 5:21 L4 PM	02	1	
5:21 L7 PM	03	816	
5.21.21 PM 5.21.25 PM	03	3	
5 21 25 PM	05	1	
5:71:35 PM 5:71:34 PM 5:71:38 PM	09	9	
5.21 45 PM	07	9	
5:22 08 PM 5 22 11 PM	03	33	
5 22:19 PM 5 22:26 PM	07	9	
5:22 27 PM 5 22 30 PM	03	9	
5 22:31 PM 5 22:31 PM	00	0	
5:22,36 PM 5:22,37 PM	01	t	
5 22 38 PM 5:22 41 PM	03	ï	
5 22 42 PM 5 22 56 PM	14	14	
S 22:57 PM 5 23:04 PM	07	r	

5-23-07 PM 5-23-31 PM	24	24
\$-23-32 PM \$-23-46 PM	16	16
5.24.05 PM 5.24.06 PM	. 01	3
5:24:07 PM 5:24:10 PM	03	3
5:24:11 PM 5:24:12 PM	01	1
5:24:14 PM 5:24:21 PM	07	9
5;24:22 PM	37	37
5:24:59 PM		
5:25:10 PM	07	7
5:25:11 PM 5:25:12 PM	01	A.
5:25:13 PM	ot	1
5:25:14 PM 5:25:15 PM	01	3
5:25:20 PM 5:25:25 PM	05	(5)
\$ 25-26 PM \$ 25-31 PM	os	\$
\$:25:39 PM \$:25:41 PM	02	2
5;25:41 PM 5:25:52 PM	u	is
5:25:52 PM 5:25:55 PM	0)	3
5 25 \$6 PM	n	13
5:26:09 PM 5 26:09 PM		
S 26:24 PM S:26:25 PM	15	15
5:26:34 PM 5:26:35 PM	09	٠
5:25:38 PM	03	3
5:26:39 PM 5:26:45 PM	(66	
5:26:47 PM 5:26:49 PM	02	7
5:27:02 PM 5:27:11 PM	01	
5:27:12 PM 5:27:13 PM	άt	1
S:27:15 PM S:27:23 PM	os	100
5:27:27 PM 5:27:36 PM	(0)	:90
5-27-37 PM 5-27-39 PM	92	1
5:77:40 PM		
5-22-46 PM 5:28:10 PM	04	
5:28:12 PM 5:28 14 PM	03	t
5:28:33 PM 5:28 14 PM	19	19
5:28:3S PM	01	\$30
5:28 43 PM 5:28:51 PM	08	
5:28:52 PM 5:29:18 PM	26	26
3:29:19 PM	05	8
5.29.25 PM		

APPENDIX H: Auxiliary Turn Lane Warrant Analyses

S-21-07 PM S-21-31 PM	24	24
S 21:32 PM S 21:44 PM	16	16
S 24 03 PM S 24 06 PM	93)
5:24:07 PM 5:24:10 PM	:03	i
5:24:13 PM 5:24:12 PM	01	i.
5:24:14 PM 5:24:21 PM	67	,
5:24:22 PM 5:24:59 PM	17	32
5 25:00 PM 5 25:07 PM	01	ŧ
5:25:10 PM 5:25:11 PM	01	ī
5:25:12 PM 5:25:13 PM	01	8
5:25:14 PM 5:25:15 PM	01	1
5:25:20 PM 5:25:25 PM	os	5
S:25:26 PM S:25:31 PM	05	5
\$ 25-25 PM \$ 25-41 PM	07	į
5:25:41 PM 5:25:52 PM	n	u
5:25:52 PM 5:25:55 PM	83	3
5:25,55 PM 5:26:09 PM	13	(3
5:26:09 PM 5:26:24 PM	(15)	is.
5:26:25 PM 5:26:34 PM	209	,
5:26:35 PM 5:26:38 PM	01	1
5:26:39 PM 5:26:45 PM	04	ś
\$26.42 PM \$26.49 PM	02	r
5:27 02 PM 5:27 11 PM	08	
5:27:12 PM 5:27:13 PM	03	¥
5:27:15 PM 5:27:23 PM	08	
5:27:27 PM 5:27 36 PM	09	9
5:27:37 PM 5 27:39 PM	02	æ
5-27-40 PM 5-27-45 PM	06	
5.28.10 PM 5.28.12 PM	67	2
5:28:14 PM	19	19
5:28:34 PM 5:28:35 PM	OL	¥
5:28:43 PM 5:28:51 PM	08	
5:28:52 PM 5:29 18 PM	26	26
5:29:19 PM 5:29:24 PM	05	5
5:29:25 PM 5:29:77 PM	02	2
1975000FI	1550	69

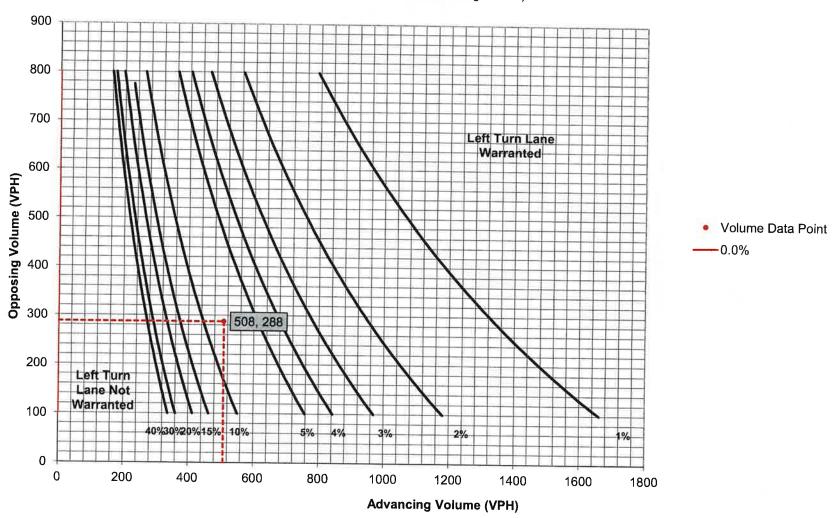
APPENDIX H: Auxiliary Turn Lane Warrant Analyses



	in Park	S	TUDY LOC	ATION AN	D ANALYS	IS INFORM	ATION	To de Salv	Banne Lett 18 No.		
Municipality: Hatfield Borough Analysis Date: 10/17/2024 County: Montgomery County Conducted By: MF PennDOT Engineering District: 6 Checked By: PHS Agency/Company Name: Traffic Planning and De											
Intersection & Approach Description: N. Main Street & Proposed Site Driveway											
Analysis Period: Design Hour: Intersection Control: Posted Speed Limit (MPH):			2026 Projected Conditions Weekday A.M. Peak Hour Unsignalized 25 Level			Number of Approach Lanes: Undivided or Divided Highway: Undivided Type of Analysis Left or Right-Turn Lane Analysis?: Left Turn Lane					
Type of Terrain: Level L											
Left Turn Lane Volume Calculations											
						Culations					
Movement Advancing Opposing	Left Through Right Left Through	No No	Volume 0 502	% Trucks 2.0% 2.0% 5.0%	PCEV 0 508 N/A N/A 286	n/ 1 - E		Advancing Volu Opposing Volu Left Turn Volu Advancing Volu	ime: 288		
	Right	Yes	1	2,0%	2		t Turns III	Advancing voic			
CAMPICE IN	NE S		Ri	ght Turn Lan		liculations					
Movement Advancing	Left Through Right	No	279 1	% Trucks 5.0% 2.0%	N/A N/A N/A			Advancing Volu Right Turn Volu			
		4 7 5	TUF	RN LANE W	VARRANT	FINDINGS					
Let	ft Turn La	ane Warrar	nt Findings	-714.11		Righ	nt Turn L	ane Warrant F	indings		
Applicable \		igure:	Figure 1 #DIV/0!			Applicable W	Varrant F Warrant !		I/A		
NELLY ENTIRE			TUR	VIANE LEI	NGTH CAL	CULATIONS	W. Ye				
Design Hour Volu Cycles F	me of Tur Per Hour (on Control: ning Lane: Assumed): If Known):	Unsignalize 0 60 60			t of Vehicles/Cyc		#DIV/0!	1		
				PennDOT Pub	lication 46, Ex	hibit 11-6 ed (MPH)					
	Туре	of Traffic Co	ntrol	25-35		40-45 mand Volume		50-60			
		Signalized	High A	Low	High B or C	Low B or C	High B or C	Low B or C	3		
		Unsignalized		A	С	В	B or C	В]		
Left Turn Lane Storage Length, Condition A: Condition B: #DIV/0! Feet Condition C: #DIV/0! Feet Required Left Turn Lane Storage Length: #DIV/0! Feet Additional Findings:											
			J		M 35			#DIV/			
Additional Comments	s / Justifica	tions:									

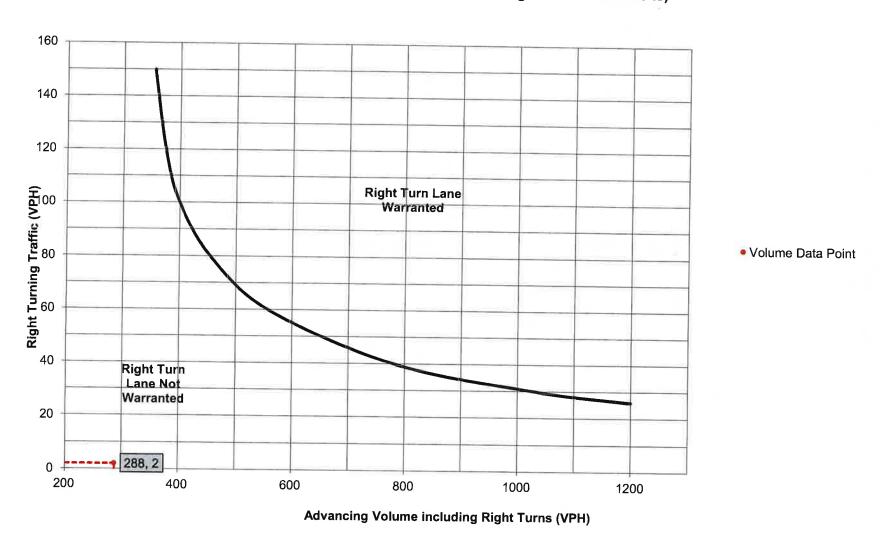
Figure 1. Warrant for left turn lanes on two-lane roadways (speeds to 35 mph, unsignalized and signalized intersections)

(L = % Left Turns in Advancing Volume)

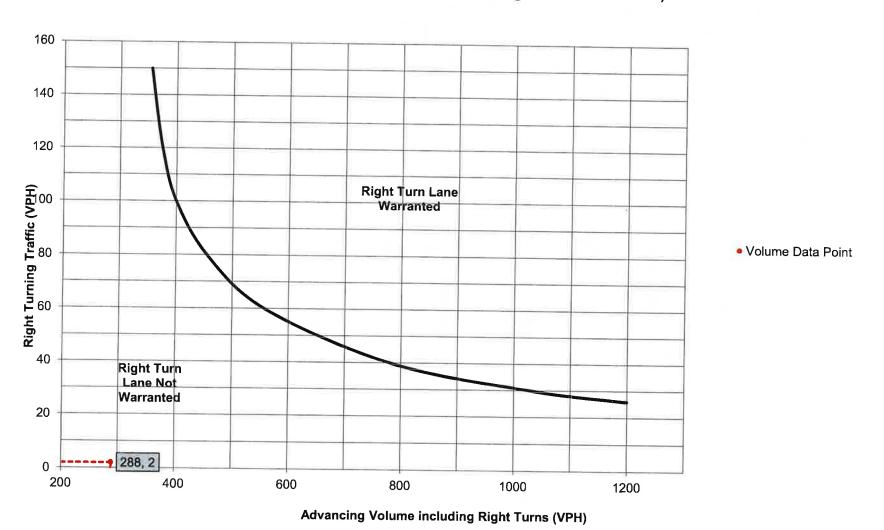


PARE NOTES	N. P.	STU	JDY LOC	ATION AN	D ANALY	SIS INFORM	ATION			it it.			
РелnDOT	Mu Engineerin	nicipality: County: g District:	Montgom	Borough ery County 6	Ag	Analysis Date: 10/17/2024 Conducted By: MF Checked By: PHS Agency/Company Name: Traffic Planning and Design, Inc.							
Intersection & Ap	proach De	scription: N. N	lain Street &	Proposed Site	e Driveway	4 - 5							
	Des ntersection Speed Lim	sign Hour:	2026 Projected Conditions Weekday A.M. Peak Hour Unsignalized 25 Level			Number of Approach Lanes: Undivided or Divided Highway: Undivided Type of Analysis Left or Right-Turn Lane Analysis?: Left Turn Lane							
	VOLUME CALCULATIONS												
7.18.35.EUV	1000171		L	eft Turn Lan	e Volume Ca	liculations		N. N. L. SALES					
Movemen	t	Include?	Volume	% Trucks	PCEV				me: 508				
Advancing	Left Through Right Left Through	Yes No No	0 502 279	2.0%	0 508 N/A N/A 286		,	dvancing Volu Opposing Volu Left Turn Volu	me: 288 me: 0				
	Right	Yes	1	2.0%	2	% Le	ft Turns in A	dvancing Volu	me: 0.00%				
	Right Turn Lane Volume Calculations												
Movemen Advancing	Left Through	Include?	Volume 279	% Trucks 5.0%	PCEV N/A N/A			dvancing Volu					
	Right		11	2.0%	N/A			inglic rain you					
	Villa II	Surgit!	TUF	RN LANE V	VARRANT	FINDINGS	-t.1/63	Enkey.					
Le	ft Turn La	ine Warrant F	indings			Rig	ht Turn La	ne Warrant F	indings				
Applicable \			gure 1]		Applicable V	Varrant Fig Warrant N		I/A				
	Warrant	Met?: #L	IV/0!	J				iet					
			TUR	LANE LE	NGTH CAI	CULATIONS	15		AL GARA	, KIA			
Design Hour Volu Cycles (Per Hour (<i>F</i>	ning Lane:	Unsignalize 0 60	ed	Average	# of Vehicles/Cyo	cle:	#DIV/0!]				
	_			PennDOT Pul	olication 46, Ex	chibit 11-6 eed (MPH)			1				
	Type	of Traffic Contro		25-35		40-45		50-60					
	Туре	or manic contro	High	Low	Turn De	Low	High	Low	1				
		Signalized	A	A	B or C	B or C	B or C	B or C	1				
	Left Turn Lane Storage Length, Condition A: Condition B: Condition C: #DIV/0! Feet Condition C: #DIV/0! Feet Required Left Turn Lane Storage Length: #DIV/0! Feet												
				757 5, 22 510			Additi	ional Findings #DIV/0					
Additional Comment	s / Justifica	tions:						1107103/09					

Figure 1. Warrant for left turn lanes on two-lane roadways (speeds to 35 mph, unsignalized and signalized intersections)

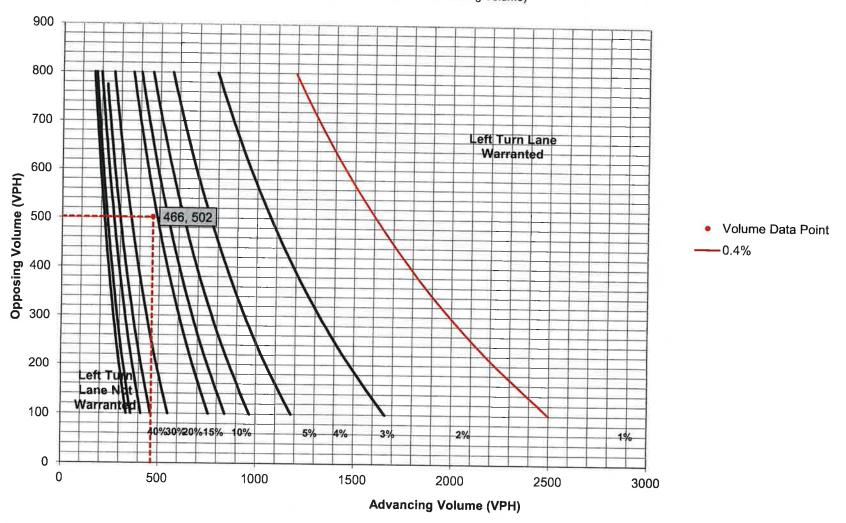

(L = % Left Turns in Advancing Volume)

	100	STL	DY LOC	ATION ANI	ANALYS	IS INFORM	ATION			
PennDOT Er		nicipality: County: g District:	Montgomery County			Analysis Date: 10/17/2024 Conducted By: MF Checked By: PHS Agency/Company Name: Traffic Planning and Design, Inc.				
Intersection & App	roach De	scription: N. M	ain Street &	Proposed Site	Driveway					
	Des tersection	Charles and Charle			Number of Approach Lanes: Undivided or Divided Highway: Undivided Type of Analysis					
Type of Terrain: Level Left or Right-Turn Lane Analysis?: Right Turn La										
	MX			VOLUME	CALCULAT	IONS	ON OWN			
		AT THE	L	eft Turn Lane	Volume Cald	ulations				
Movement		Include?	Volume	% Trucks	PCEV					
Advancing 1	Left Through Right	Yes - No	502	2.0%	N/A N/A N/A		0	vancing Volume: N/A pposing Volume: N/A eft Turn Volume: N/A		
Opposing 1	Left Through Right	No Yes	279 1	5.0%	N/A N/A N/A	% Le	ft Turns in Ad	vancing Volume: N/A		
	الملك		Ri	ght Turn Lan	e Volume Ca	culations				
Movement	Left	Include?	Volume	% Trucks	PCEV N/A		-	700		
Advancing	Through Right		279 1	5.0%	286			vancing Volume: 288 ght Turn Volume: 2		
			TUR	N LANE W	ARRANT	FINDINGS				
Left	Turn La	ne Warrant F	indings	15000		Rig	ht Turn Lan	e Warrant Findings		
Applicable W			I/A				Warrant Figu			
V	Varrant I	Met?:	I/A				Warrant Me	etr. No		
Acidon Marie	de de		TURN	LANE LEN	IGTH CAL	CULATION	S			
Design Hour Volum Cycles Pe	ne of Turr er Hour (A		Unsignalize 2 60 60	d	Average #	of Vehicles/Cy	cle:	N/A		
			0.1.2	PennDOT Publ		ibit 11-6 d (MPH)				
				25-35	1 4	0-45 and Volume	50	0-60		
	Туре	of Traffic Contro			Turn Den	idila volume				
			High	Low	High	Low	High	Low		
		Signalized	А	Low A A			High B or C B or C	B or C		
				A A Right Turn L	High B or C C ane Storage L	B or C B ength, Condit	B or C B or C tion A: tion B: tion C: ength:	B or C		
Additional Comments /	U	Signalized Insignalized	А	A A Right Turn L	High B or C C ane Storage L	B or C B ength, Condit Condi	B or C B or C tion A: tion B: tion C: ength:	N/A Feet N/A Feet N/A Feet N/A Feet Feet Feet		


Figure 9. Warrant for right turn lanes on two-lane roadways (40 mph or lower speeds, unsignalized and signalized intersections)

		STU	DY LOCA	ATION AN	D ANALY	SIS INFORM	ATION	LVn.55					
PennDOT E		nicipality: County: g District:	Hatfield I Montgome 6	ry County	A	Analysis Conduct Check gency/Company I	ed By: ed By:	10/17/ M PH ic Planning a	F				
Intersection & Approach Description: N. Main Street & Proposed Site Driveway													
	Des tersection Speed Lim	ign Hour: V	026 Projecte Veekday A.M Unsign 29 Lev	alized 5		Number of Approach Lanes: Undivided or Divided Highway: Type of Analysis Left or Right-Turn Lane Analysis?; Right Turn Lane							
	VOLUME CALCULATIONS												
Left Turn Lane Volume Calculations													
Movement Include? Volume % Trucks PCEV													
Advancing	Left Through Right Left Through	Yes No No	0 502 279	2.0%	N/A N/A N/A N/A		Oj Le	vancing Volu oposing Volu eft Turn Volu	ume: N/A ume: N/A				
	Right	Yes	1	2.0%	N/A	% Le	ft Turns in Ad	vancing Volu	ıme: N/A				
Right Turn Lane Volume Calculations													
Movement		Include?	Volume	% Trucks	PCEV								
Advancing	Left Through Right	No	279 1	5.0%	N/A 286 2			vancing Volu ht Turn Volu					
	110 7	345734	TUR	N LANE V	VARRANT	FINDINGS							
Left	Turn I a	ne Warrant F	indinas			Rig	ht Turn Land	Warrant F	indings				
Applicable W	arrant Fi	igure: N	I/A			Applicable \	Varrant Figu Warrant Me	re: Fig	ure 9				
V.	Varrant I	viet:	I/A										
			TURN	LANE LE	NGTH CA	LCULATION:		سارجين					
Design Hour Volun Cycles Pe	ne of Turr er Hour (A	n Control: ning Lane: assumed): f Known):	Unsignalized 2 60 60	d PennDOT Pub		# of Vehicles/Cy	cle:	N/A					
						eed (MPH)		60					
	Туре	of Traffic Control	=0_	25-35	Turn D	40-45 emand Volume	5 X 5	-60					
		Signalized	High A	Low A	High B or C	Low B or C	High B or C	B or C					
		Insignalized	A	А	С	В	B or C	В	_				
	Right Turn Lane Storage Length, Condition A: Condition B: N/A Feet Condition C: N/A Feet Required Right Turn Lane Storage Length: Additional Findings: N/A												
Additional Comments	/ Justificat	ions:											

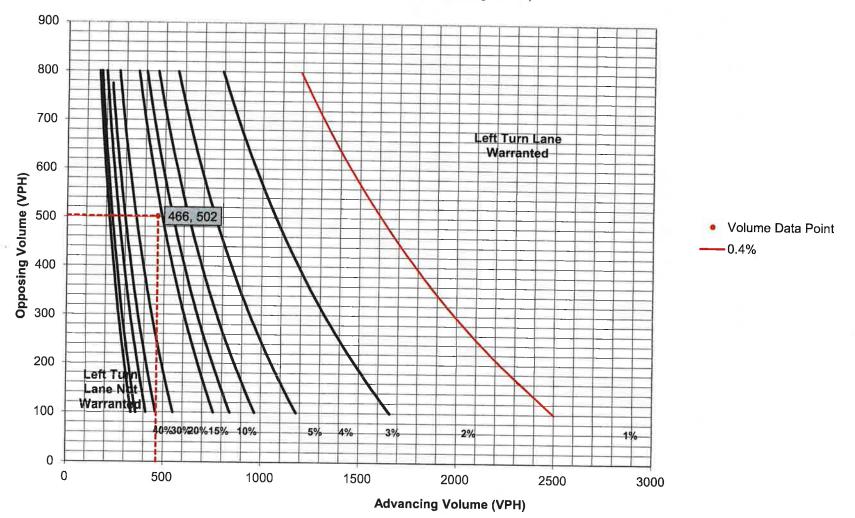
Figure 9. Warrant for right turn lanes on two-lane roadways (40 mph or lower speeds, unsignalized and signalized intersections)



	77.15	STO	JDY LOC	ATION AN	D ANALYS	IS INFORM	ATION					
	Man	nicipality:	Hatfield	Borough		Analysis	Date:	10/17	/2024			
	With	County:		ery County		Conducte	d By:	M	F			
PennDOT E	ngineerin			5		Checked By: PHS			IS			
rembore	приссии	b District.			Age	ncy/Company N	lame: Tra	ffic Planning	and Design, Inc.			
Intersection & App	roach De	scription: N. N	Main Street &	Proposed Site	Driveway							
		8										
	Analys	is Period:	2026 Projecte	ed Conditions		Number	of Approach	Lanes:	1			
	Des	ign Hour:	Weekday P.M. Peak Hour			Undivided o	r Divided Hi	ghway:	Undivided			
In	tersectio	n Control:		nalized				- T	pe of Analysis			
Posted S	•	iit (MPH):		.5		rete - Diebe T	um lana An		Left Turn Lane			
Type of Terrain: Level Level												
				VOLUME	CALCULAT	IONS						
	1000		L	eft Turn Lan	e Volume Cal	culations						
		Include?	Volume	% Trucks	PCEV							
Movement	Left	Include? Yes	1	2.0%	2		Ad	dvancing Vol	ume: 466			
Advancing	Through	res	459	2.0%	464			pposing Vol				
Auvancing	Right	No	133		N/A		ı	eft Turn Vol	ıme: 2			
	Left	No			N/A				***			
Opposing	Through		496	1.0%	499							
	Right	Yes	2	2.0%	3	% Lef	t Turns in A	dvancing Vol	ume: 0.43%			
PARTY I	E 9297		Ri	ght Turn Lai	ne Volume Ca	Iculations						
Movement		Include?	Volume	% Trucks	PCEV							
	Left	No			N/A				21/6			
Advancing	Through	A	496	1.0%	N/A			dvancing Vol				
	Right	91	2	2.0%	N/A		KI	ght Turn Vol	ame: N/A			
i de chest d			TUF	IN LANE V	VARRANT	FINDINGS	الدوال	A V Syle				
1 oft	Turn La	ne Warrant I	Findings			Rigi	nt Turn Lan	e Warrant I	Indings			
				 l		Applicable V		-	N/A			
Applicable W	arrant F	igure: Fi	gure 1	<u> </u>								
v	Warrant	Met?:	No			,	Warrant M	et?:	N/A			
	CALL!		TURN	LANE LE	NGTH CAL	CULATIONS	ABITAL	I SRE				
1-		Control:	Unsignalize	od]								
Design Hour Volun			2									
Cycles Pe	ar Hour (A	Assumed):	60						_			
		f Known):	60		Average #	of Vehicles/Cyc	le:	N/A				
•		-		PennDOT Pul	olication 46, Exh	ibit 11-6						
						d (MPH)						
	Type	of Traffic Contr	ol	25-35		10-45	5	0-60				
	""			Low	Turn Der High	nand Volume Low	High	Low				
	-	Signalized	High	A	B or C	B or C	B or C	B or C				
		Insignalized	A	А	С	В	B or C	В				
				Loft Turn	Lane Storage	Length, Condit	ion A:	N/A	Feet			
				Leit Turn	Latie Storage		100		Feet			
						Condit		N/A				
						Condit		N/A	Feet			
				Requi	red Left Turn L	ane Storage Le	ength:	N/A	Feet			
							Additio	onal Finding	s:			
					Table 1			N,	/A			
Additional Comments	/ Justifica	tions:										

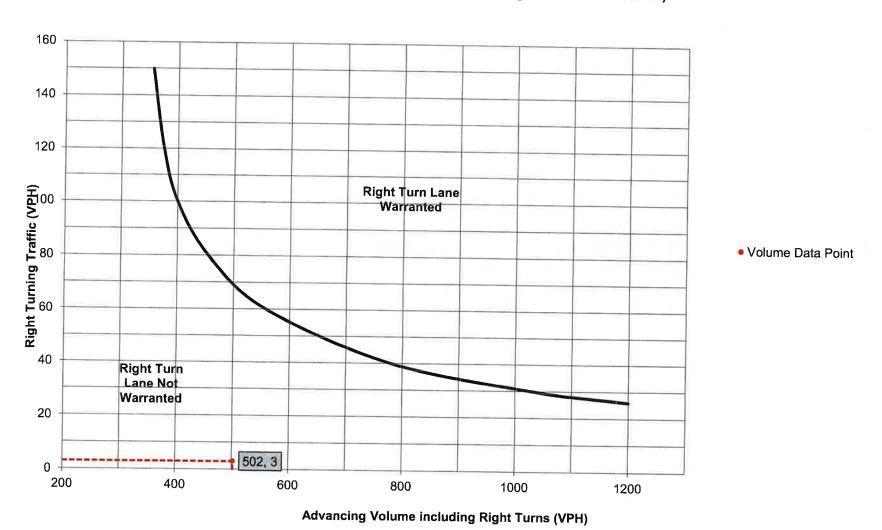
Figure 1. Warrant for left turn lanes on two-lane roadways (speeds to 35 mph, unsignalized and signalized intersections)

(L = % Left Turns in Advancing Volume)

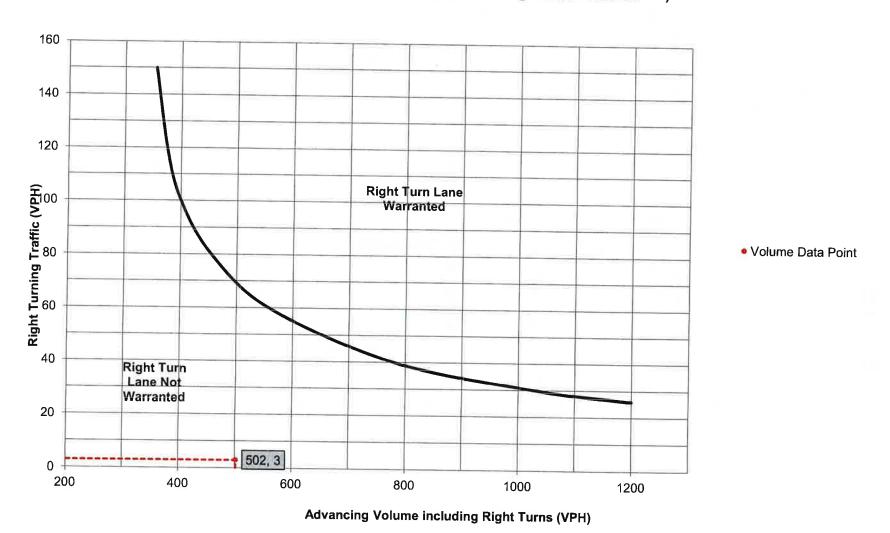


		STU	JDY LOCA	ATION AN	D ANALY	SIS INFORM	ATION					
2 207.5		nicipality:	Hatfield Montgome	ery County		Analysis Date: 10/17/2024 Conducted By: MF Checked By: PHS						
PennDOT E	ngineerin	g District:		0	Ag	Agency/Company Name: Traffic Planning and Design, Inc.						
Intersection & Approach Description: N. Main Street & Proposed Site Driveway												
	Analys	is Period:	2026 Projecte	ed Conditions		Number	of Approach Lane					
Design Hour: Weekday P.M. Peak Hour Undivided or Divided Highway: Undivided												
Intersection Control: Unsignalized Posted Speed Limit (MPH): 25 Type of Analysis												
Type of Terrain: Level Left or Right-Turn Lane Analysis?: Left Turn Lane												
VOLUME CALCULATIONS VOLUME CALCULATIONS												
	Y-TAILS		L	eft Turn Lane	e Volume Ca	Iculations						
Movement		Include?	Volume	% Trucks	PCEV							
	Left	Yes	1	2.0%	2			ing Volume: 466				
Advancing	Through		459	2.0%	454 N/A			ing Volume: 502				
	Right Left	No No			N/A		20.011					
Opposing	Through		496	1.0%	499	0/1-	ft Turns in Advanc	ing Volume: 0.43%				
	Right	Yes	2	2,0%	3		IT TUTTIS III AUVAIIC	mg voidine.				
			Ri	ght Turn Lan	ie Volume C	alculations						
Movement		Include?	Volume	% Trucks	PCEV N/A							
Advancing	Left Through	No -	496	1.0%	N/A		Advanc	ing Volume: N/A				
,	Right	- 1	2	2.0%	N/A		Right Tu	urn Volume: N/A				
		NE SH	TUR	N LANE V	VARRANT	FINDINGS						
Left	Turn La	ne Warrant F	indings			Rigi	ht Turn Lane Wa	rrant Findings				
Applicable W			gure 1			Applicable V	Varrant Figure:	N/A				
1	Warrant	Met?:	No				Warrant Met?:	N/A				
			TURN	LANE LE	NGTH CAL	CULATIONS	5					
Ir	itersectio	n Control:	Unsignalize	d								
Design Hour Volur			60									
		(ssumed): f Known):	60		Average	# of Vehicles/Cy	cle: N/A					
		25		PennDOT Pub	lication 46, Ex	hibit 11-6						
				26.25	Spe	eed (MPH) 40-45	50-60					
	Туре	of Traffic Contro	ol 📗	25-35	Turn De	mand Volume						
			High	Low	High B or C	Low B or C	High B or C	Low B or C				
		Signalized Insignalized	A	A	C	В	B or C	В				
				Left Turn l	Lane Storage	Length, Condit	ion A: N/	A Feet				
				23.4 741111		Condit						
						Condit						
				Requir	ed Left Turn	Lane Storage L						
						-	Additional F	De l'estate l'abril				
								N/A				
Additional Comments	/ Justificat	tions:										

Figure 1. Warrant for left turn lanes on two-lane roadways (speeds to 35 mph, unsignalized and signalized intersections)


(L = % Left Turns in Advancing Volume)

	-11/4	STU	DY LOCA	TION AND	ANALYS	IS INFORM	ATION					
PennDOT Er		County:	Hatfield E Montgome 6	ry County	Age	Analysis Date: 10/17/2024 Conducted By: MF Checked By: PHS Agency/Company Name: Traffic Planning and Design, Inc.			5			
Intersection & App	roach Des	scription: N. M	ain Street & I	Proposed Site [Driveway							
	Des ersection peed Lim	ign Hour:	026 Projecte Weekday P.M Unsign 25 Lev	I. Peak Hour alized	Number of Approach Lanes: Undivided or Divided Highway: Type of Analysis Left or Right-Turn Lane Analysis?: Right Turn Lane							
VOLUME CALCULATIONS												
un maximum maxima	QLEV.	PETER!	Le	ft Turn Lane	Volume Cal	culations		VII.				
Movement Advancing	Left Through Right	Yes No	Volume 1 459	% Trucks 2.0% 2.0%	PCEV N/A N/A N/A	Advancing Volume: Opposing Volume: Left Turn Volume:						
Opposing 1	Left Through Right	No Yes	496	1.0%	N/A N/A N/A		ft Turns in Adva	ancing Volu	me: N/A			
			Rig	tht Turn Lane		iculations						
Movement Advancing	Left Through Right	No No	496 2	1,0% 2.0%	N/A 499 3			ancing Volu t Turn Volu				
		Lista V	TUR	N LANE W	ARRANT	FINDINGS						
Left	Turn La	ne Warrant F	indings			Rigi	ht Turn Lane	Warrant F	indings			
Applicable W		gure:	N/A				Varrant Figure Warrant Met		ure 9			
		COLUMN TO A	TURN	LANE LEN	GTH CAL	CULATIONS		N X II X				
Design Hour Volum Cycles Pe	ne of Turn er Hour (A	ing Lane: ssumed):	Unsignalized 3 60 60			of Vehicles/Cyd	cle: N	I/A]			
				PennDOT Publi		ed (MPH)		<u> </u>				
	Туре	of Traffic Contro		25-35 Low		40-45 mand Volume Low	50-6 High	Low				
		Signalized Insignalized	High A A	A A	B or C	B or C	B or C B or C	B or C	3			
	Right Turn Lane Storage Length, Condition A: Condition B: Condition C: N/A Feet Feet Required Right Turn Lane Storage Length: Additional Findings:											
Additional Comments	/ Justificat	ions:						N/	A			


Figure 9. Warrant for right turn lanes on two-lane roadways (40 mph or lower speeds, unsignalized and signalized intersections)

	Wealth	ST	NDA FOC	ATION AN	D ANALYS	IS INFORM	ATION			
PennDOT E		nicipality:	Hatfield Montgome	tfield Borough tgomery County Checked By: Agency/Company Name:				10/17/ M PH offic Planning a	F	
Intersection & App	proach De	scription: N. N	Main Street &	Proposed Site		,,,				
microcolon a ripi										
	Des ntersection Speed Lim	sis Period: sign Hour: n Control: nit (MPH):	2026 Projecte Weekday P.N Unsign 2 Lev	Л. Peak Hour nalized 5		Number of Approach Lanes: Undivided Undivided Type of Analysis Left or Right-Turn Lane Analysis?: Right Turn Lane				
	J-Section 1			VOLUME	CALCULA'	TIONS	0	46 Ng		
	10.000000000000000000000000000000000000	Ne Cosa to	Le	eft Turn Lane	Volume Ca	culations				
Movement		Include?	Volume	% Trucks	PCEV					
Advancing	Left Through Right Left	Yes No No	1 459	2.0%	N/A N/A N/A			dvancing Volu Opposing Volu Left Turn Volu	ıme: N/A	
Opposing	Through Right	Yes	496	2.0%	N/A N/A	% Let	ft Turns in A	dvancing Volu	ıme: N/A	
100000000000000000000000000000000000000			Ri	ght Turn Lan	e Volume Ca	lculations		A-011		
Movement		Include?	Volume	% Trucks	PCEV					
Advancing	Left Through Right	No -	496	1.0%	N/A 499 3			dvancing Volu		
			THE	NIANEW	VARRANT	FINDINGS				
	Turn I	ine Warrant					ht Turn La	ne Warrant F	Indings	
			N/A			Applicable V			ure 9	
Applicable W	warrant r Warrant		N/A				Warrant N		No	
	I STA	v mesete		LANE LE	NGTH CAL	CULATIONS	E LE			
Design Hour Volui Cycles P	me of Tur er Hour (/	n Control: ning Lane: Assumed): If Known):	Unsignalize 3 60 60			‡ of Vehicles/Cyo		N/A		
	_			PennDOT Pub		hibit 11-6 ed (MPH)				
	Туре	of Traffic Contr	ol	25-35		40-45 mand Volume		50-60		
			High	Low	High	Low	High	Low		
		Signalized Unsignalized	A	A	B or C	B or C	B or C B or C	B or C		
Right Turn Lane Storage Length, Condition A: N/A Feet Condition B: N/A Feet Condition C: N/A Feet										
			-	Require	d Right Turn	Lane Storage L		N/A onal Finding		
Additional Comments	/ Justifica	tions:						N/	<u> </u>	
Additional continents	,									

Figure 9. Warrant for right turn lanes on two-lane roadways (40 mph or lower speeds, unsignalized and signalized intersections)

Response Letter to Review Letter from Bursich 9.18.24

October 14, 2024

Jaime E. Snyder Borough Manager Hatfield Borough 401 South Main Street P.O. Box 190 Hatfield, PA 19440

RE:

23 N. Main Street - Hatfield Walk

Hatfield Borough, Montgomery County, PA

HCE Project No.: 1727

Dear Jaime:

We are in receipt of several review letters for the above-referenced project. Below please find responses to each of the comments contained in those letters.

Review Letter from Bursich Associates dated September 18, 2024.

Zoning Ordinance Comments

- 1. The following items must be revised to comply with the Zoning Decision:
 - A. The R-4 Zoning District standards shall be added to the record plan. The standards that are superseded by the Conditions of the Zoning Hearing Decision shall be noted. The proposed conditions must be related to the R-4 standards.

Response: R-4 District Standards have been added to the table.

- B. The plans shall show 20-foot building setbacks rather than 10-foot and 2-foot setbacks, except along the northwestern line adjacent to the post office property. **Response: The setbacks have been revised.**
- C. The proposed sidewalk along the Renner Property shall be located adjacent to the proposed curbing for the access drive.

Response: The sidewalk has been adjusted.

- D. The privacy fences along the driveway should extend to the faces of the buildings on the Renner and Hausmann properties unless the fences would conflict with the required sight triangle. The sight triangle shall be shown on the plan. Response: The fence has been revised and the sight triangle has been shown on the plan
- E. The existing Zoning District boundaries and labels for the affected and adjacent properties shall be added to the Record Plan.
 Response: Zoning District boundaries have been added and the property owners have been provided.
- F. Condition 1.c stipulates that Open Space shall be restricted form further development and shall be offered to the Borough for dedication. The Record Plan

shall label the proposed Open Space and provide metes and bounds of the

Response: The open space area has been delineated and a note has have been added to the record plan.

2. §27-816.1.B.(3) - The Borough Council shall evaluate all applications relating to common driveways as to the location, placement, and alignment of such common driveways based upon the ease of accessibility to, and efficient maneuverability through, for protective services of fire and police.

Response: Acknowledged.

3. §27-2302.1 - The classification of the onsite stream shall be indicated on the plans. The source of the limit of the Riparian Corridor shown on the plans shall be clarified. Additionally, the Limit of Stream/Top of Bank along the southern side of the stream shall be clarified as it does not appear to match the topography between labels TOB-A6 and TOB-A4 on the Existing Features Plan.

Response: The stream classification and riparian buffer have been noted on the plan.

4. §27-2302.2 - Steep slopes shall be identified on the plans, and the Riparian Corridor boundary shall be updated if applicable.

Response: The steep slopes have been added to the Existing Features Plan.

Subdivision and Land Development Ordinance

- 1. §22-305 & §22-307 The plans shall be revised to include or clarify the following information:
 - A. The parcels subject to the application shall be labeled on the Record Plan, and the Lot Line to be Removed shall be more clearly labeled. Site Plan Note 3 on sheet 1 shall include both parcels.

Response: On C1.0, a label has been added to each property containing the relevant Parcel ID numbers. The label regarding the Lot Line to be Removed has been moved into a more prominent position. Site Plan Notes No. 3 has been edited to include both Parcel ID numbers.

B. The street right-of-way line along the property frontage shall match the legend. Response: The plan and legend line type has been edited to match each other.

C. The Owner's Certification on the Record Plan must include all property owners party to the subdivision and land development.

Response: On Sheet C1.0, the Owner's Certification has been updated to include the relevant property owners and parties.

D. The Existing Features (and Demolition) Plan shall label all features to be removed. The limit of tree clearing must be shown on the Existing Features and Grading and Drainage Plans.

Response: On Sheet C1.1, additional labels reading "TO BE REMOVED" have been added to the existing features plan to better show the features and trees

being removed. The proposed tree line/Limits of Tree Removal has been added to C1.1, C3.0 and C5.0.

E. The bounds of the new site shall be labeled to the right-of-way line.

Response: Boundary information to the right-of-way line has been added.

F. The Combined Lot Area in the Lot Area Calcs. Table on sheet 1 shall indicate "Net".

Response: The table has been revised.

G. Dimensions shall be provided for the backup / turnaround area at the end of the parking row, the radii for all curves, sidewalk width, Community Area, distance between post office parking lot and underground basin / Community Area, driveway to property line.

Response: Added dimension have been added to the plans.

- H. The first-floor elevations shall be added to the plans. The ground outside the buildings must be at least 18-inches below finished floor, except at the garages. Response: First floor elevations have been added to the plans. The proposed project will be slab on grade construction and a minimum of 8-inch to outside grade has been provided as required by building code.
- ADA ramps shall be designed at the end of the internal sidewalk and both sides of the driveway.

Response: ADA ramps have been provided.

J. Sign symbols.

Response: On Plan Sheet C1.0 and C2.0, the proposed signs symbol has been added to the legend and sign labels have been added to the plans to clarify the proposed signs.

K. Lights.

Response: Lighting has been added.

- L. The Location Map shall include the surrounding road names.

 Response: On Plan Sheet C1.0 and C1.1, a location map showing the names of surrounding roads has been included.
- M. The soils line shall be shown differently for clarity and be included in the legend. Response: Across all plans, the Soils Boundary Line type has been changed, and the legend has been updated to clarify the Soils Boundary.
- N. Existing features within 200 feet of the site are required to be included on the plans. Of particular importance are buildings, topography, vegetation, utilities, sidewalks, signs, etc. An aerial image may be appropriate.

Response: A plan sheet C1.2 has been added with an Aerial Image to show existing features within 200 feet of the site.

O. The proposed building heights and number of stories shall be added to the plans.

Response: On plan sheet C2.0, the building height and number of stories has been added.

P. The legend shall be more complete to clarify the lines and symbols on the plans, particularly on the Record Plan.

Response: Across all plan sheets, legends have been updated to clarify lines and symbols.

- Q. The proposed grades shall be shown on the plan view on sheet 14. Response: Grades have been added to the profile sheet.
- §22-410.E The clear sight triangle shall be labeled on the plans, and all existing and proposed features within the sight triangle shall be labeled.
 Response: The clean sight triangle has been added to the plans.

3. §22-413 – Sidewalks and Curbs

A. The curbing within the N. Main St. right-of-way shall be concrete unless a waiver is granted.

Response: Curbing within the right of way will be concrete.

- B. A detail of the curb tapers shall be added to the plans.

 Response: On Plan Sheet C2.0, a Curb Taper Detail has been added.
- 4. §22-414.B(2) Parking areas shall not be located closer than 20 feet from any tract boundary line. These setback areas shall be landscaped in accordance with the requirements of §22-420, General Planting Requirements. Per §22-414.1.A.(3), "Parking" includes the driveway which provides direct access to the parking spaces.

Response: A waiver from this section will be required since the proposed driveway is within 50 feet.

5. §22-420.D.(2) – A 100 percent performance bond shall be posted to ensure replacement of landscape material that is removed, destroyed, damaged, or in ill-health within 15 months of installation. We also recommend an agreement be recorded perpetually requiring the Homeowner's Association to replace any landscaping that dies at any point in the future.

Response: Acknowledged.

6. §22-426 – The Applicant shall present evidence that water will be supplied by a certified public utility.

Response: A water will serve letter will be provided.

7. §22-427 – The Applicant shall present evidence that sewer service will be supplied by a certified public utility.

Response: A sewer will serve letter will be provided.

- 8. §22-428 Compliance with Engineering & Construction Standards:
 - A. §108.3.A A letter of endorsement shall be required from the suppliers of utility services wherein the applicant acknowledges that underground utilities are feasible.

Response: The letters of endorsement will be provided.

B. §108.3.D – Proposed lights shall be added to the plans along with footcandles showing safe lighting at the parking lots and along the sidewalks. The footcandles shall also illustrate that lighting will not spill across the tract lines. Details of the light fixtures and supporting bases shall be added to the plans.

Response: The plan has been revised to depict the lights to be provided.

C. §110 – Fire hydrants shall be located at accessible points in the development and shall be located according to the Fire Marshal and Water Authority.

Response: Fire hydrants have been coordinated with the Fire Marshal and Water Authority.

D. §112.1. — Concrete monuments shall be installed along the right-of-way lines where they meet adjoining properties. Property corner pins shall be installed. The pins and monuments shall be shown on the Record Plan. Existing monumentation shall be labeled as Found & Held where applicable.

Response: Boundary monumentation has been added to the plan.

9. §22-502.B — A cost estimate to establish financial security for the completion of the proposed improvements shall be provided.

Response: Acknowledged. A cost estimate will be provided once all plan items have been addressed.

Stormwater Comments

1. §26-132.2.B(3)(i) – The following signature block for the Design Engineer shall be added: "I, (Design Engineer), on this date (date of signature), hereby certify that the SWM Site Plan meets all design standards and criteria of The Neshaminy Creek Watershed Act 167 Stormwater Management Ordinance or Plan."

Response: On Plan Sheet C3.0, the Design Engineer Certification signature book has been edited to include the above note.

- 2. §26-161 For subdivisions and land developments, the applicant shall provide financial security acceptable to the Borough of Hatfield for the timely installation and proper construction of all stormwater management (SWM) facilities as specified in this section. Response: Acknowledged.
- §26-164 A Stormwater Operation and Maintenance Agreement must be provided to the Borough Solicitor's satisfaction.

Response: Acknowledged.

4. The Pre-Development Drainage Area Map shall illustrate the off-site area that is in the calculations.

Response: On Figure 2, the EOS-1 "Existing Undisturbed" area is now shown.

5. The Post-Development Drainage Area Map shall clarify how much runoff from Units 1-4 roofs are proposed to reach the storm basin. The roofdrains / downspouts shall be illustrated on the design plans.

Response: On Plan Sheet C3.0, Roof Drains/downspouts and Roof Drain Collector Pipe has been added.

- The drainage area to the underground basin on the Post-Development Drainage Area Map does not appear to be accurate. The overland flow north of the driveways and access drive would not enter the basin based on the topography.
 - Response: The grading has been revised to ensure the overland flow gets into the Underground Basin.
- 7. We recommend a roofdrain pipe be installed to tie the downspouts from Units 5-8 into inlet box CB-5. This would keep runoff from the downspouts away from the building foundation. Response: On Plan Sheet C3.0, a Roof Drain Collector Pipe has been added, and it will connect directly into CB-5 to keep runoff away from the building foundation.
- The Tc paths must be shown on the Drainage Plans.
 Response: On Figures 2, 3 and 4, TC Paths are now shown.
- 9. The Dekalb method of stormwater calculations shall use 3/3 limb factors to better estimate the anticipated volume of runoff.

Response: The Stormwater Calculations have been revised to provided a 3/3 limb factor.

- 10. The plans shall include the level spreader that is shown on the Detail Sheet. The detail shall be updated to reflect the proposed discharge pipe condition.
 - Response: The application is no longer proposing a Level Spreader, and the detail has been removed.
- 11. The storm sewer design calculations must consider the tailwater elevation in the storm basin.

Response: The Storm Sewer Design Calculations have been revised to consider the tailwater elevation.

12. Stormwater runoff from the neighboring properties to the south currently drains to, and across, the subject property. The plans proposed to raise the grade along the southern property line by over one foot in some locations. Additional topographic detail shall be provided along this property line to confirm the drainage from the neighboring properties will not be blocked. In particular, the Haque / Islam property contains a garage approximately two feet from the property line where the grade will be raised.

Response: The grading has been revised to not trap runoff from many of the neighboring properties, however, in most cases the runoff will flow along the propert line parallel to Board Street. The flow from the Haque/ Islam and Derstine properties will be conveyed around the property to the Walker property in a manner consistent with the existing conditions.

Erosion and Sedimentation Control Comments

- The proposed silt socks must be shown more clearly on sheet 10.
 Response: On Plan Sheet C5.0, the filter socks are now shown more clearly.
- 2. Existing trees and Tree Protection Fencing must be added to the plan.

Response: On Plan Sheet C5.0, the existing tree line, the proposed tree line and tree protection fencing has been added.

Construction fencing shall be added along the limits of disturbance.
 Response: On Plan Sheet C5.0, a note has been added to the plans stating that construction fencing is to be added along the Limits of Disturbance and Sequence of Construction Note 3 has been edited to include Construction Fencing.

4. If the plans are not being reviewed by the MCCD, then references to that agency can be removed from the notes on sheet 10.

Response: On Plan Sheet C5.0, references to MCCD have been removed from the notes.

 The Sequence of Construction must indicate that no earth disturbance shall commence until Hatfield Borough inspects the E&S controls and authorizes earth disturbance activities to begin. The E&S controls shall not be removed until authorization is given by the Borough.

Response: On Plan Sheet C5.0, the sequence of Construction Notes 4 and 13 has been edited to indicate that earth disturbance cannot commence, nor E&S controls can be removed, without authorization from Hatfield Borough.

A topsoil stockpile location shall be added to the plans.
 Response: On plan sheet C5.0, a topsoil stockpile has been added.

7. All lines and symbols representing E&S controls must match the Legend.

Response: On plan sheet C5.0, lines and symbols have been updated to ensure plans and legends match.

Sanitary Sewer Comments

- 1. The sanitary sewer design should be discussed with our office. In particular, the following will need to be coordinated:
 - A. Illustrate the sanitary modifications being made in North Main Street
 - B. Internal sanitary layout and depth of force main
 - C. Locations of the grinder pumps and accessory panels and backup power supply
 - D. Pump design / hydraulic capacity pump curve

Response: The additional information has been provided. The pump design information is included with this submission.

2. The following note shall be added to the Utility Plan:

"The sanitary sewer system in North Main Street is in the process of being replaced by Hatfield Borough during the design of these plans. The configuration of the sanitary lateral connection may be different than what is illustrated on these plans by the time the site is being developed."

Response: On plan Sheet C4.0, a Utility Note 17 has been added.

3. The plans include a label "See General Note 7" at the existing sanitary sewer manholes in North Main Street. General Note 7 is not applicable to sanitary sewer.

Response: The label has been removed.

PADEP Sewage Facilities Planning shall be addressed.
 Response: A copy of the planning module mailer is included.

General Comments

 The existing asphalt parking area for the Post Office encroaches approximately 12 feet onto the subject property. The Applicant shall indicate whether a parking easement exists on the property and illustrate the easement on the plans. If no easement exists, then one will need to be established, or the parking area will need to be removed.

Response: The existing parking easement/ lease area has been provided on the plans.

2. The existing pull-in parking spaces for the Post Office are located approximately 8 feet from the proposed Community Area and underground storm basin. A barrier should be installed to stop vehicles from driving into this area.

Response: A post and rail fence has been added to the plans.

- 3. The intention of the Community Area and any amenities shall be clarified.

 Response: The community area is to be kept as lawn. A label has been added to the plans.
- 4. The Belgian Block Curb detail indicates a curb reveal of 7-inches, and the spot grades indicate a 6-inch reveal. The curb reveal shall be clarified.

Response: The Belgian block curb detail has been revised.

5. Some of the neighboring properties to the south contain two-story garages / potential living areas within one foot of the property line. The Applicant and Borough should consider the impact on these property owners to access the rear of their buildings when the privacy fence is installed along the property line.

Response: The fence has been adjusted closer to the proposed driveway to provide additional space.

 The proposed six-space pull-in parking is proposed to be located approximately 6 feet from the wall of Unit 1. We recommend a barrier, bumper blocks, and/or landscaping be provided to protect the building. Additionally, headlights and exhaust would likely be a nuisance to the occupants if windows are built on that wall.

Response: Landscape buffering has been added to the plans.

- 7. The plans shall clarify if the site will contain community or individual mailboxes. Response: A community mailbox pad has been added to the plan.
- 8. Site Plan Note 20 on sheet 1 shall include sheets 1, 3, 6, and 7 to be recorded. These sheets shall also be noted to be recorded on the Drawing List.

Response: The note has been revised.

9. Site Plan Note 9 on sheet 1 shall clarify that each unit will be responsible for trash pickup at their driveways rather than a community dumpster.

Response: The note has been revised.

10. We recommend a backup / turn-around area be provided in the access driveway for Unit 4 to back out of their driveway.

Response: Additional backup area has been provided.

11. Turning templates shall be provided for internal site movements.

Response: A copy of the fire truck turning template has been provided in a separate plan included with this submission.

- 12. Detail Sheet:
 - A. The intent of the Street Sign shall be clarified since no sign is proposed on the plans.

Response: The street sign has been removed.

B. Details shall be provided for concrete curb, ADA ramps at the intersection and lights.

Response: The details have been added.

- Detailed design of the ADA ramps shall be provided prior to plan recording.
 Response: The additional ramp information has been provided on sheet #6.
- 14. The proposed crosswalk and stop bar on the Detail Sheet shall be illustrated on the plans. Response: The crosswalk and stop bar have been added to the plans.
- 15. Grading Note 6 on sheet 5 shall be revised to resolve the conflict in the horizontal to vertical slopes.

Response: The note has been revised.

16. The proposed Japanese Zelkova tree at the intersection of the driveway and N. Main St. shall be removed to avoid conflicts with sight distance, overhead utilities, neighboring driveway, and sidewalk. The three proposed Japanese Zelkova trees along the Renner property shall be replaced with trees that will not impact the Renner's property and the proposed sidewalk.

Response: The landscaping has been revised.

17. We recommend the privacy fence be extended along the property line between Unit 5 and the Post Office parking lot, at a minimum, for safety, security, and privacy.

Response: The privacy fence has been extended.

18. Homeowner's Association documents shall be provided to the satisfaction of the Borough Solicitor.

Response: Acknowledged.

19. Legal descriptions shall be provided for the overall tract, any defined easements, and areas to be offered for dedication to Hatfield Borough.

Response: The legal descriptions will be provided once all engineering items have been satisfied.

- 20. Reviews, approvals, permits required include, but are not limited to, the following:
 - A. PaDEP Sewage Facilities Planning
 - B. Montgomery County Planning Commission
 - C. Borough Traffic Engineer
 - D. Borough Fire Marshal
 - E. Borough Electric Consultant
 - F. Emergency Service providers
 - G. NPWA for service adequacy and design approval
 - H. HTMA for sewage treatment capacity

Response: Acknowledged.

21. Additional comments may be generated from subsequent submissions as a result of the plan and design revisions and additional information to be provided.

Response: Acknowledged.

Traffic Review Letter from Bowman dated September 20, 2024.

Site Access Study

1. The site access study should be revised to include a traffic analysis of the intersection of intersection of Main Street and Broad Street. The intersection currently experiences delay during the commuter peak hours and the queuing along Main Street may impact the operation of the site driveway during the commuter peak hours. A gap study along North Main Street at the proposed site driveway location should be conducted if necessary to confirm that there are an adequate number of gaps in the North Main Street traffic stream for vehicles to safely enter and exit the site.

Response: As requested, the Main Street and Broad Street intersection has been included in the traffic analysis. Additionally, a gap study has been completed at the site driveway and is included in the revised traffic analysis.

- The site access study should be updated to include capacity/levels-of-service analysis for the intersection of North Main Street and the site driveway for the weekday morning and weekday afternoon peak hours under 2029 future with-development conditions.
 - Response: As requested, capacity analysis has been included in the revised traffic analysis.
- 3. The study should be revised so that the entering and exiting site trips for the weekday morning peak hour shown in Table 6 and on Figure 6 match the distribution percentages shown in Table 5. In addition, the turn lane warrant analysis shown in Appendix C should be revised accordingly.

Response: As requested, the traffic analysis has been revised to address the above comment.

Preliminary/Final Land Development Plans

1. The pavement markings along Main Street at the site access should be reviewed. Modifications to the pavement markings may be required to properly manage the

movements to \from the site, the left turn lane at the signalized intersection, and the existing pedestrian crossing and parking at the post office. It should be noted that the Borough has identified traffic calming\pedestrian improvements along North Main Street at the existing pedestrian crossing for the post office.

Response: Acknowledged.

2. Sight distance measurements must be shown on the plans for the intersection of North Main Street and the site driveway as required by Section 22-405.1 of the Subdivision and Land Development Ordinance.

Response: Sight distances have been added to the plans.

3. Turning templates should be provided with future plan submissions demonstrating the ability of a trash truck, emergency vehicle, and the largest expected delivery truck to maneuver into and out of the driveway along North Main Street and entirely through the site. The Borough Fire Marshal should review the emergency vehicle turning template for accessibility and circulation needs of emergency apparatus.

Response: The fire truck turning template has been provided.

- 4. A "Stop" sign and stop bar should be shown on the plans on the site driveway approach to North Main Street. "No Parking" signs should be shown on the plans along the eastern side of the site driveway from North Main Street to the northern end of the site driveway. **Response: The additional signage has been provided.**
- 5. ADA ramps must be provided at the driveway along Main Street for the existing sidewalk. An ADA ramp should also be shown on the plans on the northern end of the sidewalk located on the western side of the site driveway at its intersection with the drive aisle leading to/from the townhomes.

Response: Ramp information has been added to the plans.

6. A back-up area should be provided on the western end of the drive aisle leading to/from the townhomes so that vehicles backing out of the driveways for lots 4 and 5 have adequate space to complete this maneuver.

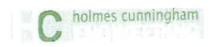
Response: Additional backup area has been provided

Fire Review Letter from Code Inspections, Inc. dated September 10, 2024.

- 1. Due to the length of the proposed dead end fire lane a fire apparatus access road turnaround must be provided.
 - a. For approval a fire apparatus turning model shall be provided using the attached specifications for the Hatfield Fire Company Ladder Truck. The turning radius of the street and the apparatus turnaround shall be designed to accommodate the requirements for this apparatus.
 - b. The purpose of this model is to confirm that the fire apparatus will be able to enter and exit the property including using the provided fire apparatus access road without leaving the paved surface with minimal backing of apparatus.

Response: The turning template has been provided on a supplemental plan sheet.

If you have any questions or require additional information, please do not hesitate to contact us at 215-586-3330 or rob@hcengineering.net


Very truly yours,

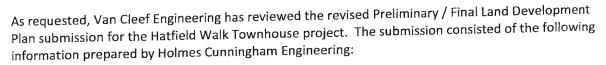
Holmes Cunningham Engineering

Rob Cunningham, P.E., LEED AP

Partner

O:\1727 - Arbor Grove Hatfield\Outbound\Twp Response Letter 2024-10-14.docx

Engineer Review Letter


November 11, 2024

Jaime E. Snyder Borough Manager Hatfield Borough 401 South Main Street P.O. Box 190 Hatfield PA 19440

RE: Hatfield Walk Townhomes (23 N. Main St.)

Land Development Review Letter 2 Bursich Project No: HAT-01 / 228290

- Plans titled Hatfield Walk, consisting of sheets 1 through 15 of 15, dated August 7, 2024 with latest revision date of October 11, 2024
- Plan titled Hatfield Walk Fire Truck Turning Template, sheet 1 of 1, dated October 14, 2024 with no revision date
- Post Construction Stormwater Management Plan Narrative, dated August 7, 2024 with latest revision date of October 14, 2024
- Letter dated October 14, 2024 in response to Borough consultant review letters
- Letter dated Oct 10, 2024 from Site Specific Design, Inc. with Pressure Sewer Design Analysis

The site consists of two parcels: one contains an existing dwelling, fronts N. Main Street, and is located entirely in the CC – Core Commercial Zoning District; while the other is unimproved, is landlocked behind the first property and the Post Office property, and is split between the CC District and R-1 Residential District. The plan proposes eight townhouse units in two buildings, each with four units, separated by a paved access aisle. Each unit is proposed to include a two-car garage and driveway. Six parallel parking spaces are proposed along the access aisle, and a separate six-space lot is also proposed, for a total of twelve shared parking spaces. The existing dwelling on the N. Main Street parcel is to be demolished to construct the driveway, which will gain access from N. Main Street. The applicant intends to remove the common property line and join the properties into a common deed.

We offer the following for your consideration:

F:\Projects\HAT-01\228290_Hatfield Walk (23 N. Main St.)\Land Development\Reviews\2024-11-11_Hatfield Walk Townhomes-LD Rvw 2.docx

732-303-8700

610-332-1772

Hatfield Walk Townhomes November 11, 2024 Page 2 of 7

VARIANCES GRANTED

At a Hearing on April 24, 2024, the Hatfield Borough Zoning Hearing Board granted the following variances from the Borough's Zoning Ordinance, subject to seventeen conditions:

- 1. A variance from Section §27-1202 to allow townhouses in the R-1 Residential Zoning District.
- 2. A variance from Section §27-1204 to permit alternate dimensional standards in the R-1 Residential Zoning District.
- 3. A variance from Section §27-2101 to allow townhouses in the CC Core Commercial Zoning District.
- 4. A variance from Section §27-2108.1.G to permit alternate rear yard dimensional standards in the CC Core Commercial Zoning District.
- 5. A variance from Section §27-2108.1.H to permit alternate front yard dimensional standards in the CC Core Commercial Zoning District.

WAIVERS REQUESTED

The following waivers have been requested. The Requested Waivers shall be listed on the Record Plan and in a letter to the Borough.

- §22-414.B(2) Parking areas shall not be located closer than 20 feet from any tract boundary line. These setback areas shall be landscaped in accordance with the requirements of §22-420, General Planting Requirements. Per §22-414.1.A.(3), "Parking" includes the driveway which provides direct access to the parking spaces. The driveway parking / driveway is proposed to be 5.5 feet from the eastern property line, 14 feet from the northern line, and 13 feet from the western line.
- 2. §22-420.1.C.(2) A waiver to allow a six-foot high privacy fence along the Renner property rather than the required five shade trees, and a six-foot high privacy fence and shrubs along the southeastern property boundary rather than the required seven shade trees. There is not sufficient space for shade trees along these property lines.

ZONING ORDINANCE COMMENTS

- 1. The following items must be revised to comply with the Zoning Decision:
 - A. We recommend the privacy fence along the driveway should extend to the face of the dwelling on the Renner property.

Hatfield Walk Townhomes November 11, 2024 Page 3 of 7

B. Condition 1.c stipulates that Open Space shall be restricted form further development and shall be offered to the Borough for dedication.

The Record Plan includes a 0.467-acre area labeled "Open Space". The metes and bounds of the boundary shall be shown in larger vertical text for clarity and to indicate it is proposed rather than existing. A fee-simple dedication of this area would create a subdivision with a new lot (property), which would impact the proposed area and dimensional information as they apply to meeting Zoning requirements. The Borough should also consider its intent with this Open Space area. If the intent is to create access from N. Main Street to Centennial Park, then additional planning and easement agreements will be necessary for public access through the private townhouse property to the Borough-owned park property. The Borough should also consider if they wish the walkway to be ADA-compliant.

- §27-816.1.B.(3) The Borough Council shall evaluate all applications relating to common driveways as to the location, placement, and alignment of such common driveways based upon the ease of accessibility to, and efficient maneuverability through, for protective services of fire and police.
- 3. The following revisions shall be made to the Zoning Data Table on Sheet 1:
 - A. The Required / Permitted Max. Building Coverage is 35%.
 - B. The Proposed Front Yard and Rear Yard setbacks appear to have been switched.

SUBDIVISION AND LAND DEVELOPMENT ORDINANCE

- 1. §22-305 & §22-307 The plans shall be revised to include or clarify the following information:
 - A. The Owner's Certification on the Record Plan indicates Pennington Property Group, LLC. is the owner of the properties, while the submitted deed indicates Kaler/Moyer is the owner. The legal owners of both properties must be represented on the plans.
 - B. The proposed bounds of the eastern property line must be for the combined property.
 - C. The northern adjoiner property line between the Hatfield Borough and Walker properties shall be made more clear.
 - D. Dimensions shall be provided for the backup / turnaround area between units 4 and 5, sidewalk width, distance between the buildings and sidewalks/curbs, driveway and fences to all property lines, fence lengths along the eastern property line including the gap for the fire hydrant.
 - E. Proposed spot elevations shall be provided at all corners of the buildings and along the sides of Units 5 and 8.
 - F. The limits of the curbing within the site shall be labeled.
 - G. A note shall be added to sheet 6 stating that an As-built Plan of the ADA ramps shall be submitted to Hatfield Borough after construction to confirm ADA compliance.
 - H. Lighting shall be provided for all parking spaces and walkways.

Hatfield Walk Townhomes November 11, 2024 Page 4 of 7

- 2. §22-420.D.(2) A 100 percent performance bond shall be posted to ensure replacement of landscape material that is removed, destroyed, damaged, or in ill-health within 15 months of installation. We also recommend an agreement be recorded perpetually requiring the Homeowner's Association to replace any landscaping that dies at any point in the future.
- 3. §22-426 The Applicant shall present evidence that water will be supplied by a certified public utility.
- 4. §22-427 The Applicant shall present evidence that sewer service will be supplied by a certified public utility.
- §22-428 Compliance with Engineering & Construction Standards:
 - A. §108.3.A A letter of endorsement shall be required from the suppliers of utility services wherein the applicant acknowledges that underground utilities are feasible.
 - B. §108.3.D A detail of the light fixture bases shall be added to the plans.
 - C. §110 The Fire Marshal should review the proximity of the proposed fences to the fire hydrant.
 - D. §112.1. –Existing monumentation shall be labeled as Found & Held where applicable.
- 6. §22-502.B A cost estimate to establish financial security for the completion of the proposed improvements shall be provided.

STORMWATER COMMENTS

- 1. §26-161 For subdivisions and land developments, the applicant shall provide financial security acceptable to the Borough of Hatfield for the timely installation and proper construction of all stormwater management (SWM) facilities as specified in this section.
- 2. §26-164 A Stormwater Operation and Maintenance Agreement must be provided to the Borough Solicitor's satisfaction.
- 3. The grading along the eastern corner of the property may block stormwater from adjoining properties. Additional topographic detail shall be provided. Stormwater drainage facilities may be necessary to provide positive drainage away from the property line and existing buildings.
- 4. The elevation of the weir on the detail on sheet 7 shall be revised to 323.30 to match the design calculations. The references to a level spreader shall be removed from the details.
- 5. The storm inlet labels shall be added to the plan view on sheet 15. The sanitary force main crossing shall be removed from the CB-1 to CB-2 Profile, as the crossing will be eliminated by shifting the force main.

Hatfield Walk Townhomes November 11, 2024 Page 5 of 7

- 6. The proposed grading behind and along the sides of units 5 to 8 appears to be too flat. The grate elevation of Inlet CB-5 also appears to be higher than the ground around it.
- 7. The flow summary tables on page 6 of the stormwater report do not appear to be accurate. While the design calculations appear to be satisfactory, the summary tables shall be updated.

EROSION AND SEDIMENTATION CONTROL COMMENTS

- Tree protection fencing shall be shown around the trees next to and behind the Renner property.
- 2. A minimum rock size for the riprap apron should be R-4.
- 3. The proposed post and rail fence along the post office parking lease area appears as compost filter sock on sheet 11.

SANITARY SEWER COMMENTS

- The proposed force main shall be shifted to the south to avoid the crossing with the storm pipe leaving inlet CB-1. The force main profile shall be revised to eliminate the dip. The water line should be shifted accordingly to maintain a 10-foot spacing from the force main.
- 2. The accessory equipment and backup power for the grinder pumps is proposed to be installed within dwelling units 1 and 8. The community sanitary equipment must be installed in an accessible location.
- 3. Utility Note 8 on sheet 8 must be revised to eliminate "Municipal Authority" after Hatfield Borough.
- PaDEP Sewage Facilities Planning shall be addressed.

GENERAL COMMENTS

- 1. The plans illustrate a Parking Lease Area on the site for use by the Post Office. The metes and bounds of the lease area shall be added to the Record Plan, a copy of the lease agreement shall be provided, and a note shall be added to the plan referencing the agreement.
- 2. A barrier should be installed to stop vehicles from driving into the Community Area / Underground Basin area.
- 3. The plans now show the fence to be installed approximately four feet from the eastern property line. A dimension shall be added to the plans.

Hatfield Walk Townhomes November 11, 2024 Page 6 of 7

- 4. Site Plan Note 20 on sheet 1 shall be revised to replace sheet 3 with sheet 4 to be recorded.
- 5. We recommend a larger backup / turn-around area in the access driveway for vehicles in Unit 4 to back out of their driveway. A dimension shall be added to the plans.
- 6. The proposed grading at the eastern corner of the property between the curb and Walker property does not appear to be shown correctly based on the top of curb elevations.
- 7. The Fire Marshal should review the Fire Truck Turning Template plan for maneuverability.
- 8. The Applicant and Borough should consider if a "street" name sign should be installed for the driveway.
- 9. The details shall be revised to specify 4,000 psi for all curbs, sidewalks, and ramps.
- 10. The proposed crosswalk on the plans and Detail Sheet shall match the Borough's standard crosswalk pattern, which can be seen at the intersection of Broad St. and Main St.
- 11. Homeowner's Association documents shall be provided to the satisfaction of the Borough Solicitor.
- 12. Legal descriptions shall be provided for the overall tract, any defined easements, and areas to be offered for dedication to Hatfield Borough.
- 13. Reviews, approvals, permits required include, but are not limited to, the following:
 - A. PaDEP Sewage Facilities Planning
 - B. Montgomery County Planning Commission
 - C. Borough Traffic Engineer
 - D. Borough Fire Marshal
 - E. Borough Electric Consultant
 - F. Emergency Service providers
 - G. NPWA for service adequacy and design approval
 - H. HTMA for sewage treatment capacity
- 14. Additional comments may be generated from subsequent submissions as a result of the plan and design revisions and additional information to be provided.

Hatfield Walk Townhomes November 11, 2024 Page 7 of 7

The comments are made with the understanding that all existing features and topography are accurately represented on the plans, and that all designs, calculations and surveys are accurate and have been prepared in accordance with current laws, regulations, and currently accepted Professional Land Surveying and Engineering practices.

Should you have any questions or need further information, please feel free to contact me at 484-941-0418 or ccamburn@vancleefengineering.com.

Very Truly Yours,

Van Cleef Engineering Associates, LLC

Chad E. Camburn, P.E. Senior Technical Manager

Pc: Katie Vlahos, Assistant to the Borough Manager (via email) Kate Harper, Borough Solicitor (via email)

Bob Heil, Hatfield Borough Zoning Officer (via email)

Ben Goldthorp, Pennington Property Group, LLC., Applicant (via email;

ben@penningtonpropertygroup.com)

Rob Cunningham, P.E., Holmes Cunningham LLC, Applicant's Engineer (via email;

rob@hcengineering.net)

Traffic Engineer Review Letter

Bowman

November 7, 2024

Ms. Jaime E. Snyder Borough of Hatfield 401 South Main Street P.O. Box 190 Hatfield, PA 19440

RE: Traffic Engineering Review #4

Proposed Residential Development – Hatfield Walk 23 North Main Street Hatfield, PA 19440 Project No. 311304-01-001

Dear Jaime:

Per your request, Bowman Consulting Group (Bowman) has completed a traffic engineering review of the proposed residential development to be located at 23 North Main Street in the Borough of Hatfield, Montgomery County, PA. It is our understanding that the proposed development will cor ist of the development of eight (8) townhomes. Access to the proposed development will be provide a a full-movement driveway along North Main Street.

The following documents were reviewed and/or referenced in preparation of our comments:

- Transportation Impact Assessment Proposed Hatfield Homes Residential, prepared by TPD, Inc., dated October 18, 2024.
- Preliminary/Final Land Development Plans Hatfield Walk, prepared by Holmes Cunningham Engineering, last revised October 11, 2024.

Bowman continues to offer the following comments pertaining to the land development plans for consideration by the Borough and action by the applicant.

- Bowman finds that all outstanding traffic-related technical comments associated with the
 transportation impact assessment (TIA) have been satisfactorily addressed and we have no
 additional comments pertaining to the TIA at this time. It should be noted that based on
 information provided in Table 10 of the study, the queues along North Main Street, from its
 intersection with Broad Street, will extend past the site access during both peak hours. Driveway
 and traffic signal operations should be monitored after the development is open and operating at
 full occupancy.
- 2. It should be evaluated to revise the pavement markings along North Main Street at the site access to provide a painted\gored taper for the existing southbound left-turn lane at Broad Street. Also, a painted median\center turn lane area should be provided along North Main Street encompassing the site driveway and the church driveway. The median\center turn lane should taper to the existing conditions at the pedestrian crossing for the post office.

- 3. Turning templates should be provided with future plan submissions demonstrating the ability of a trash truck, emergency vehicle, and the largest expected delivery truck to maneuver into and out of the driveway along North Main Street and entirely through the site. The Borough Fire Marshal should review the emergency vehicle turning template for accessibility and circulation needs of emergency apparatus.
- 4. A back-up area should be provided on the western end of the drive aisle leading to/from the townhomes so that vehicles backing out of the driveways for lots 4 and 5 have adequate space to complete this maneuver.
- 5. The white stripe pavement marking shown on the plans on the center of the driveway at its intersection with North Main Street should be replaced with a double yellow line pavement marking.
- 6. The plans should include details for the proposed ADA ramps on both sides of the site access along North Main Street.
- 7. Review of the <u>on-site</u> ADA ramps has <u>not</u> been completed by our office, but these ramps must be designed by the applicant's engineers to comply with Federal/PennDOT design standards for ADA facilities.
- 8. A response letter must be provided with the resubmission detailing how each comment below has been addressed, and where each can be found in the resubmission materials (i.e., page number(s)) to assist in the re-review process. Additional comments may follow upon review of any resubmitted and more detailed pans during the land development process.

We trust that this review letter responds to your request, and satisfactorily addresses the traffic issues related to the proposed development at this time. If the Borough has any questions, or requires further clarification, please contact me.

Sincerely,

Anton Kuhner, P.E.

Regional Service Lead - Signals

AKK/BMJ

cc: Chad Camburn, P.E., Bursich Associates, Inc

Catherine M. Harper, Borough Solicitor

Bob Heil, Borough of Hatfield

Rob Cunningham, P.E., Holmes Cunningham Engineering (Applicant's Engineer)

Matt Hammond, P.E., TPD, Inc. (Applicant's Traffic Engineer)

Q:\PA-FTWA-MC\MCM\eng\HATFIBO1\822C85 - 23 N Main St\Correspondence\Out\2024-11-07 Review Letter #4 - 23 North Main Street.docx

2 of 2

bowman.com

Fire Marshal Review Letter

Code Inspections, Inc.

603 Horsham Road Horsham, PA 19044

A Full Service Agency Providing **Professional Inspection Services**

Phone: 215-672-9400 Fax: 215-672-9736

November 11, 2024

Re: Preliminary and Final Land Development Review for Hatfield Walk proposed at 23 North Main

To Whom It May Concern:

The review of the plan referenced above for compliance with the 2018 International Building Code and the 2018 International Fire Code as adopted by the Pennsylvania Uniform Construction Code as well as the 2012 International Fire Code as amended and adopted by the Borough of Hatfield. The review has been completed and items in the previous submittal review letter have been addressed and approved.

Yours in safety,

Fire Marshal

Borough of Hatfield

Montgomery County Planning Commission Review Letter

MONTGOMERY COUNTY BOARD OF COMMISSIONERS

JAMILA H. WINDER, CHAIR NEIL K. MAKHIJA, VICE CHAIR THOMAS DIBELLO, COMMISSIONER

WWW.MONTGOMERYCOUNTYPA.GOV

MONTGOMERY COUNTY PLANNING COMMISSION

Montgomery County • PO Box 311 Norristown, Pa 19404-0311

610-278-3722 PLANNING@MONTGOMERYCOUNTYPA.GOV

> SCOTT FRANCE, AICP EXECUTIVE DIRECTOR

October 2, 2024

Ms. Jaime Snyder, Borough Manager Hatfield Borough 401 S. Main Street Hatfield, PA 19440

Re: MCPC #24-0003-002 Plan Name: Hatfield Walk

(8 du/1 lot on approximately 1.5 acres)

Situate: Main Street (N); northwest of Broad Street

Hatfield Borough

Dear Ms. Snyder:

We have reviewed the above-referenced subdivision and land development plan in accordance with Section 502 of Act 247, "The Pennsylvania Municipalities Planning Code," as you requested on August 21, 2024. We forward this letter as a report of our review.

BACKGROUND

The applicant, Pennington Property Group, has submitted a preliminary land development plan dated August 7, 2024 showing the construction of 8 new townhomes. In addition to garages and driveways for each townhome unit, 12 surface parking spaces are shown. The planned development also involves the construction of stormwater management facilities, a community area, and sidewalks. The proposal shows the consolidation of two properties and the removal of an existing home on the parcel fronting North Main Street. This property is located in the borough's Core Commercial zoning district. Public water and sewer serve the site.

The Montgomery County Planning Commission (MCPC) previously reviewed both a sketch plan on August 7, 2023 (MCPC # 23-0133-001), and a conceptual plan with a zoning text amendment on February 7, 2024 (MCPC # 24-0003-001) for the subject tract.

According to Sheet 1 of the Record Plan provided to MCPC on August 21, 2024, the applicant has received the following variances from the Hatfield Borough's zoning ordinance.

- From §27-1202 Permitted Uses
- From §27-1204 Dimensional Standards
- From §27-2101 Statement of Intent
- From §27-2108.1.G Minimum Rear Setback
- From §27-2108.1.H Front Yard Depth

CONSISTENCY WITH COMPREHENSIVE PLANS

The proposed plan is generally consistent with the Montgomery County Comprehensive Plan, *Montco 2040: A Shared Vision*, and, in particular, its objectives to support growth and development in appropriate areas with existing infrastructure. The applicant's site lies within a "designated growth area" per the Growth and Preservation component of the county comprehensive plan. Furthermore, our Future Land Use Map categorizes the subject tract as a "Town Residential Area". The Plan advises that these areas are oriented towards pedestrians more than automobiles. A primary use in these areas are townhouses, though Town Residential Areas can have a variety of housing types mingled within blocks or small neighborhoods.

RECOMMENDATION

The Montgomery County Planning Commission (MCPC) generally supports the applicant's proposal, however, in the course of our review we have identified the following issues that the applicant and borough may wish to consider prior to final plan approval. Our review comments are as follows:

REVIEW COMMENTS

CIRCULATION

- A. <u>Pedestrian Facilities</u>. The Walk Score® (https://www.walkscore.com/score/23-n-main-st-hatfield-pa-19440) of the development site is rated 50 (out of 100). For the provision of new sidewalks, which shall link this residential development to North Main Street, the borough may wish to consider if additional measures can be taken to facilitate walking to and from local destinations, such as Hatfield Elementary School and the central business district. We recommend that the large driveway curb cut have ADA curb ramps and a marked crosswalk.
- B. <u>Dead-End Street</u>. The access driveway delineated on the plan may be deemed a dead end street. It is uncertain how cars will adequately maneuver within the area at the end of the access drive. There appears to be a lack of backup space for Unit 4 in particular. We defer to the Borough Engineer to determine if the layout, as proposed, meets applicable municipal standards. A turnaround area may need to be considered. We recommend that future plan submissions include a truck turning template showing how trash trucks or emergency vehicles could enter/exit the site.

LANDSCAPING

The proposed plan removes two existing trees, while adding four new trees and eight shrubs. Section 22-420.1.C(3)(a) of the Subdivision and Land Development Ordinance (SALDO) requires a ratio of at least two trees for each 100 feet of property line. While the applicant has requested a waiver of the tree requirements, we recommend additional trees to provide appropriate shade and aesthetic where feasible. All shade trees should be from the list provided in § 22-421 of the SALDO. Native trees can be planted within the Riparian Corridor Conservation Overlay District in accordance with § 22-433 of the SALDO.

STORMWATER MANAGEMENT

We recommend that the developer provide some guidance for maintenance of the underground stormwater basin, as the HOA will likely be responsible.

PROPOSED COMMUNITY AREA

A "community area" is delineated on the plan in the rear portion of the development parcel. It is unclear how this open space area will function. We suggest that this open space could be furnished with various amenities, including enhanced landscaping, and, possibly, an area for sitting or passive recreation.

MISCELLANEOUS

A. Highway Occupancy Permit

As shown on the submitted plan, the applicant proposes a point of ingress/egress along Main Street (SR 0463), which is a state road maintained by the Pennsylvania Department of Transportation (PennDOT). We defer to the borough and applicant to coordinate with PennDOT concerning any issues regarding a highway occupancy permit, if applicable.

B. <u>Building Better Townhouse Communities</u>

The Montgomery County Planning Commission has published a report titled Building Better Townhouse Communities, which offers suggestions, recommendations and best practices related to townhouse developments. We invite municipal officials and the applicant to download this document from our website (https://www.montgomerycountypa.gov/1459/Publications) to gain insight on County land development policies regarding this development type.

Of particular importance are the sections related to Townhouse Design Elements and Best Practices and open space (pg. 11), garage design standards (pg. 29), parking standards (pg. 30), and garage design options (pg. 33).

CONCLUSION

We wish to reiterate that MCPC generally supports the applicant's proposal but we believe that our suggested revisions will better achieve the borough's planning objectives for residential development.

Please note that the review comments and recommendations contained in this report are advisory to the municipality and final disposition for the approval of any proposal will be made by the municipality.

Should the governing body approve a final plat of this proposal, the applicant must present the plan to our office for seal and signature prior to recording with the Recorder of Deeds office. A paper copy bearing the municipal seal and signature of approval must be supplied for our files.

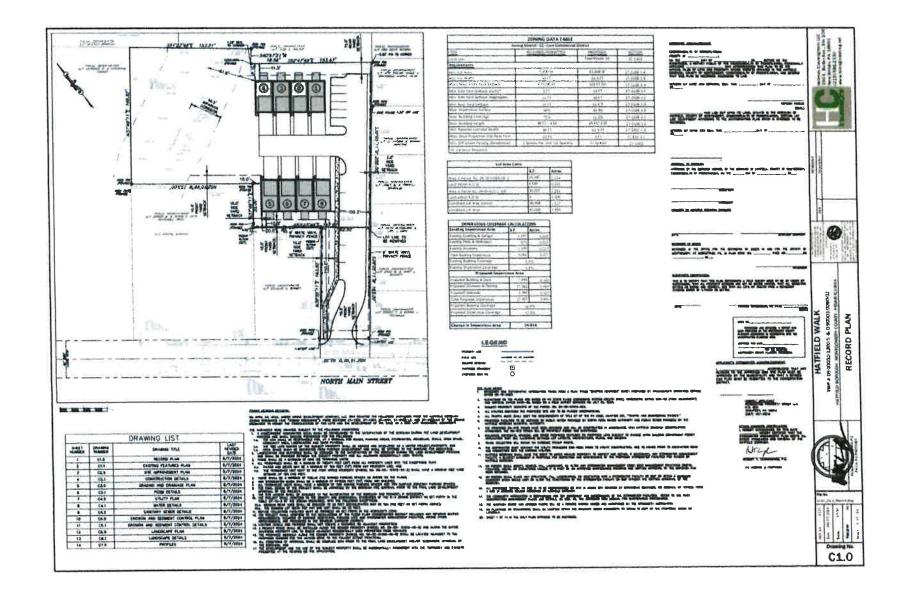
Adam Schwift

Please print the assigned MCPC number (24-0003-002) on any plans submitted for final recording.

Sincerely,

Adam Schantz, Community Planner II

adam.schantz@montgomerycountypa.gov - 610-278-3722


cc: Pennington Property Group, Applicant Katie Vlahos, Assistant Borough Manager Scott Burton, PennDOT Paul Lutz, PennDOT Fran Hanney, PennDOT

Attachment A: Aerial Image of Site

Attachment B: Reduced Copy of Applicant's Proposed Site Plan

Hatfield Walk MCPC#240003002 Montgomery 0 50 100 200 Feet
County
Planning
Commission
Montgomery County Courthouse - Planning Commission
PO Box 311 Norristown PA 19404-0311
(p) 610 278-3722 () 610 278-3941
www montcopa org/plancom
Aerial photography provided by Nearmap

ZHB Decision

The manufacture of the property of the

BEFORE THE ZONING HEARING BOARD OF HATFIELD BOROUGH

IN RE: THE APPLICATION OF ARBOR GROVE DEVELOPMENT COMPANY, LLC

DECISION AND ORDER

FINDINGS OF FACT

- 1. On or about February 15, 2024, Arbor Grove Development Company, LLC (the "Applicant") submitted an Appeal (the "Application") to the Hatfield Borough Zoning Hearing Board (the "Board") requesting Variances to Sections 27-1202, 27-1204, 27-2102, 27-2108.1.G and 27-2108.1.H of the Borough's Zoning Ordinance ("Zoning Ordinance") proposing the consolidation of two separate parcels into one parcel for the development of a nine unit townhouse community.¹
- 2. The properties which are the subject of the Application (collectively the "Subject Property") are owned by Robert L. Kaler, III and Joanne E. Moyer (Parcel No. 09-00-01012-00-5) and Barry V. Moyer and Joanne E. Moyer (Parcel No. 09-00-01006-00-2) located at N. Main Street and 23 N. Main Street.
- 3. The Subject Property is split zoned with a portion being in the Borough's CC-Core Commercial Zoning District and the remainder in the R-1 Residential Zoning District. The Board was unsure whether the zoning line followed the existing property lines.
- 4. The Applicant was authorized by the owners of the Subject Property to submit the Application and request the relief set forth therein as evidenced by the Owners' signature on the Application.
- 5. The Subject Property consists of two parcels. Parcel No. 09-00-01012-00-5 is a vacant landlocked lot identified as N. Main Street consisting of 55,067 square feet. Parcel No. 09-00-01006-00-2 is identified as 23 N. Main Street consisting of approximately 10,000 square feet (+/-) and is improved with a house.

¹ The Application, as submitted, stated the Zoning Districts as Core Commercial and R2. Applicant revised its Application to amend and correct the Zoning Districts to Core Commercial and R1. This amendment was completed prior to advertising the hearing.

- 6. The Subject Property is surrounded by single family homes, the post office, a borough park, and a commercial business. See Exhibit A-2.
- 7. A hearing on the Application (the "Hearing") occurred before the Board on March 27, 2024. At the Hearing, Board members James Rudolph, Chairman, John Pedrazzani, and Paul Mullin, Esquire were present. Dan Ruch, Alternate Member, was also present. The Board was represented by its Solicitor, Eric C. Frey, Esquire, of the law firm of Dischell, Bartle & Dooley, P.C. The Borough Manager, Jaime Snyder and Zoning Officer, Robert Heil, were also present.
- 8. At the Hearing, the Applicant provided testimony in support of the Application. The Applicant presented the testimony of:
 - (a) Michael Amoroso, Managing Member, of Applicant; and
 - (b) Robert Cunningham, P.E., Applicant's Engineer.

The Applicant was represented by Michael Meginniss, Esquire of Begley, Carlin & Mandio, LLP.

- 9. Two members of the public entered their appearance, without objection, as parties to the Application, as follows:
 - (a) Douglas S. Renner, 25 N. Main Street; and
 - (b) Janet L. McCarthy, 13 E. Broad Street.

While various other members of the public asked questions related to the Application, no other person or property owner requested party status before the Board.

10. The following documents were entered into the record as Board Exhibits:

Exhibit B-1 - Revised Application Package;

Exhibit B-2 - Legal Notice;

Exhibit B-3 - Proof of Publication (published in The Reporter on March 5 and March 12, 2024); and

Exhibit B-4 - Affidavit of Zoning Officer.

11. The following documents were entered into the record as Applicant Exhibits:

Exhibit A-1 - Color Plan of Subject Property; and

Exhibit A-2 - colored Aerial,

12. Nether the Borough nor the other parties offered any exhibits.

- 13. As set forth in the Application, the Applicant desires to consolidate the two Subject Parcels into one parcel to permit the development of a nine-unit townhouse community as shown on the plan ("Plan") marked as part of Exhibit B-1 during the Hearing.
- 14. All or a majority of the proposed development of the Subject Property is within the portion zoned CC-Core Commercial.
- 15. The Subject Property, as a combined tract, will have 62 feet of frontage on North Main Street with the largest portion of the Subject Property being a land locked tract behind the Post Office.
- 16. The northwest portion of the Subject Property is not developable as it contains an intermittent stream and associated floodplains and/or wetlands.
- 17. Prior to the current Application, the Applicant proposed multiple other proposals to the Borough, as follows:
 - (a) mixed use apartments and commercial with 6,800 square feet of office with 22 apartments;
 - (b) twins consisting of more than 9 units; and
 - (c) Townhomes with 10 units.
- 18. The commercial development of the Subject Property is not practical due to the fact that there is limited road frontage.
- 19. The limited frontage and access would impair visibility and access for a commercial use. Further, the frontage and shape of the Subject Property presented issues for fire safety.
- 20. The current proposal is for a residential development consisting of nine townhomes with associated access parking and stormwater improvements ("Project")
 - 21. The Project has proper access for fire safety and emergency vehicles.
 - 22. The current proposal has 12 overflow parking spaces as shown on the Plan.
 - 23. Each townhome, as shown on Exhibit A-1, would meet the following:
 - (a) be 20 feet wide by 40 feet deep;
 - (b) have a two car garage;

- (c) have 2 surface parking spaces in a dedicated driveway;
- (d) be 3 stories high;
- (e) contain three bedrooms; and
- (f) offer a 10 feet by 10 feet second story deck.
- 24. While not finally determined, it is anticipated that the proposed townhomes will sell for over \$500,000 each.
- 25. Each townhome is proposed to be 20 feet from rear of the townhome to a property line, with decks being 10 feet from a property line.
- 26. The closest townhome (townhome no. 6 on Exhibit A-1) will be 10 feet from the side of a townhome to a property line.
- 27. As shown on the Plan, the development of the Subject Property will include an underground detention basin and a community area.
- 28. The detention basin and community area are not fully designed but would be designed as required by the Borough during the Borough's subdivision and land development approval process.
- 29. A homeowners' association will be created to manage the roadway, parking areas, stormwater controls and other common areas as shown on the Plan.
 - 30. The emergency access for the Project will be approved by the Fire Marshal.
- 31. The Applicant will not develop the area of the Subject Property next to the Borough Park and will offer the same for dedication to the Borough during the Borough's review and approval of the subdivision and land development plans for the Subject Property.
- 32. The access has not been approved by the Borough but will be reviewed and approved by the Borough during the Borough's review and approval of the subdivision and land development plans for the Subject Property.
- 33. The proposed townhomes will have less traffic impact than many if not most of the uses permitted by the Zoning Ordinance in the CC District.
- 34. A cul-de-sac with individual lot singles will not work on the Subject Property as the bulb would need to be 100 feet wide which would take up most of the developable area.
- 35. Applicant will comply with the Borough's landscaping requirements and will supplement the same to the satisfaction of the Borough as determined during the

Borough's review and approval of the subdivision and land development plans for the Subject Property.

- 36. The proposed townhomes are more in line than the uses permitted in the CC Zoning District and will have less impacts on the neighborhood than the permitted uses.
- 37. Provided the conditions set forth in the below Order are strictly enforced, the improvement and use of the Subject Property as requested will be in no way detrimental to the public health, safety, and welfare.

DISCUSSION

Applicant has requested Variances from Section 27-1202, 27-1204, 27-2101, 27-2108.1.G. and 27-2108.1.H of the Zoning Ordinance to permit the consolidation of two lots and the development of the same as a nine unit townhouse community.

In order to qualify for the grant of a variance, Applicant is required to show that they have met the criteria set forth in Section 910.2 of the Pennsylvania Municipalities Planning Code ("MPC"), as follows:

- (1) That there are unique physical circumstances or conditions, including irregularity, narrowness, or shallowness of lot size or shape, or exceptional topographical or other physical conditions peculiar to the particular property, and that the unnecessary hardship is due to such conditions, and not the circumstances or conditions generally created by the provisions of the Zoning Ordinance in the neighborhood or district in which the property is located;
- (2) That because of such physical circumstances or conditions, there is no possibility that the property can be developed in strict conformity with the provisions of the Zoning Ordinance and that the authorization of a variance is therefore necessary to enable the reasonable use of the property;
 - (3) That such unnecessary hardship has not been created by Applicant;
- (4) That the variance, if authorized, will not alter the essential character of the neighborhood or district in which the property is located, nor substantially or permanently impair the appropriate use or development of adjacent property, nor be detrimental to the public welfare; and
- (5) That the variance, if authorized, will represent the minimum variance that will afford relief and will represent the least modification possible of the regulation in issue.

Applicant has established that the Subject Property possesses certain unique physical characteristics. Specifically, the Applicant identified the following hardships: (a) landlocked parcel; (b) split zoned parcel; (c) odd shape; (d) environmental conditions; (e) limited frontage. Because of the hardships, presented, the Board determined that the Subject Property cannot be

used or developed in strict conformity with the Zoning Ordinance. The Board is satisfied that the unnecessary hardship facing the use of the Subject Property, as set forth above, was not created by Applicant.

The Board has determined that the Applicant's requested variance relief will not alter the essential character of the neighborhood or district in which the Subject Property is located, nor substantially or permanently impair the appropriate use or development of adjacent property. The Board finds that the townhomes are more in line with the existing residential uses than the uses permitted in the CC Zoning District. So long as the conditions set forth in the Order below are met, the Board is satisfied that the grant of the variance relief requested will not be detrimental to the public health, safety, or welfare. The impacts of the proposed relief are mitigated by the conditions set forth in the Order.

Further, The Board has determined that Applicant has requested the minimum relief from the Zoning Ordinance necessary to effectuate a reasonable use of the Subject Property.

CONCLUSIONS OF LAW

- 1. Pursuant to Section 909.1 of the Pennsylvania Municipalities Planning Code, the Board has exclusive jurisdiction to hear and render a final adjudication relative to the Application.
- 2. As set forth in the Application, Applicant has standing to request the variance relief related to the Subject Property.
- 3. The requirements for a variance in Pennsylvania are clear and are specifically stated in Section 910.2 of the MPC. Given the testimony presented at the Hearing, a careful review of the record evidence offered in support of the requested variance relief, and with no substantive proof offered to the contrary, the Board finds that Applicant has established an entitlement to Applicant's requested variance relief so long as the conditions set forth in the Order below are met.
- 4. Particularly noteworthy, this Board concludes that Applicant's requested variance relief is consistent with and will not be adverse to the public health, safety, or welfare and that Applicant's requested variance relief is the minimum relief necessary so long as the conditions set forth in the Order below are met.
- 5. Accordingly, this Board issues the following Order.

{ ORDER ON NEXT PAGE }

ORDER

AND NOW, this 24th day of April, 2024, the Application of Arbor Grove Development Company, LLC is hereby **GRANTED** subject to the stated conditions below. The Board **GRANTS** Variances from Sections 27-1202, 27-1204, 27-2101, 27-2108.1.G. and 27-2108.1.H of the Zoning Ordinance to permit the consolidation of two lots and the development of the same as a nine unit townhouse community as shown in the Application (Exhibit B-1) and the Plan (Exhibit A-1).

The relief is granted in accordance with the Application and plans submitted and subject to the following conditions:

- A Homeowners' Association (HOA) shall be established to the satisfaction of the Borough during the land development process and shall include provisions for the following:
 - a. The HOA shall be responsible for, at a minimum, for roads, parking areas, stormwater, sidewalks, trails, open space, community area, landscaping and snow plowing;
 - The two lots making up the Subject Property shall be merged and developed as a united Project/property; and
 - Open Space shall be restricted from further development and shall be offered to the Borough for dedication.
- Landscaping and buffering shall be designed to the satisfaction of the Borough during the land development process and shall be provided between the Subject Property and all adjoining residentially used tracts;
- 3. There shall be a maximum of nine (9) townhome units;
- 4. All townhomes shall be a minimum of twenty feet (20') from all property lines with the exceptions that:
 - a. patios and decks may be a minimum of ten feet (10') from any property line; and
 - the townhouse unit next to the post office property (Parcel No. 09-00-01015-00-2) shall have a minimum side yard setback of ten (10) feet.
- 5. There shall be a minimum of twelve (12) shared parking spaces as shown on the plans;
- 6. Any stormwater basin shall be a minimum of fifteen feet (15') from any building;

- 7. All townhouse units shall have a minimum of two garage parking spaces and two surface driveway parking spaces;
- 8. The final design of the Project shall be approved by the Borough Fire Marshal prior to the final land development approval of the Project;
- 9. The site access shall be designed to the satisfaction of the Borough and PennDOT, if necessary;
- 10. The Project shall conform to the density and dimensional standards of the R-4 Zoning District as set forth in the Table 27-15-3 of the Zoning Ordinance, with the following exceptions:
 - a. Minimum rear yard shall be reduced to 20 feet (decks/patios may be ten (10) feet as set forth above);
 - b. The minimum lot width for any end unit shall be 25 feet;
- 11. Refuse collection facilities must be provided as set forth in the Borough's Code;
- 12. The Project shall conform to the regulations of the Flood Plain Conservation District including any riparian buffer requirements. Clearing of existing vegetation, parking lots and stormwater management facilities, among other improvements, are prohibited in the Riparian Corridor District;
- 13. Lighting levels and fixtures shall not create a nuisance on adjacent properties;
- 14. A privacy fence shall be installed along the Renner Property (Parcel No. 09-00-01009-00-8) and along the entire southern property line to shield adjacent residentially used properties from vehicles;
- 15. The proposed sidewalk along the Renner Property (Parcel No. 09-00-01009-00-8) shall be located adjacent to the proposed curbing for the access drive to the fullest extent practical;
- 16. All conditions of approval shall be complied with prior to the final Land Development and/or Subdivision approval by the Borough; and
- 17. The Development and the use of the Subject Property shall be substantially consistent with the testimony and exhibits presented at the Hearing on the Application.

The Foregoing Findings of Facts, Discussion, Conclusions of Law and Order, are hereby approved as the Decision and Order of the Board.

ZONING HEARING BOARD OF HATFIELD BOROUGH

mes Rudolph, Chairman

John Pedrazzani, Secretary

Paul Mullin, Esquire, Member

Written Decision mailed: 4.25.2024

NOTE TO APPLICANT

There is a thirty (30) day period after the date of a decision for an aggrieved person to file an appeal in the Court of Common Pleas of Montgomery County to contest an approval or denial by the Zoning Hearing Board. If the Application has been granted by the Zoning Hearing Board, the Applicant may act on said approval during this thirty (30) day appeal period; however, the Applicant will do so at his/her own risk. If the Applicant received Zoning Hearing Board approval, the Applicant must still secure all necessary and applicable permits from Hatfield Borough within twelve (12) months of the date of the approval of the Zoning Hearing Board.

4. Old Business:

- A. Bennetts Court Update
- B. Didden Greenhouses Update
- C. 43 Roosevelt Avenue Update

5. New Business:

6. Action Items:

A. Motion to Consider Granting Preliminary / Final Approval for Hatfield Walk, 23 N. Main Street, Development.

7. The Next Planning Commission Meeting is Scheduled for Monday, December 16, 2024 at 6:00PM in Council Chambers

8. Motion to Adjourn